202 research outputs found
Low-Energy Nuclear Astrophysics - the Fascinating Region of A=7
We discuss results and future plans for low-energy reactions that play an
important role in current nuclear astrophysics research and that happen to
concentrate around the region of A=7. The 7Be(p,gamma)8B and the
3He(4He,gamma)7Be reactions are crucial for understanding the solar-neutrino
oscillations phenomenon and the latter one plays a central role in the issue of
cosmic 7Li abundance and Big-Bang Nucleosynthesis. We also present results
regarding the host dependence of the half life of the electron-capture 7Be
radio-nuclide.Comment: 8 pages, 6 figures. Proceedings of the Erice School on Nuclear
Physics, 2006. To appear in: "Prog. Part. Nucl. Phys.
Alpha decay rate enhancement in metals: An unlikely scenario
It has been recently suggested that one might drastically shorten the alpha
lifetime of nuclear waste products, if these are embedded in metals at low
temperatures. Using quantum mechanical tunneling arguments, we show that such
an effect is likely to be very small, if present at all.Comment: RevTeX4. 5 pages, 1 figure. Accepted by Nucl. Phys.
The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang
nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement
of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran
Sasso underground laboratory by both the activation and the prompt gamma
detection methods. The present work reports full details of the prompt gamma
detection experiment, focusing on the determination of the systematic
uncertainty. The final data, including activation measurements at LUNA, are
compared with the results of the last generation experiments and two different
theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.
Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA
Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear
astrophysics are performed at the LUNA (Laboratory for Underground Nuclear
Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso
laboratory. By virtue of a specially constructed passive shield, the laboratory
gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels
comparable to those experienced in dedicated offline underground gamma-counting
setups. The gamma-ray background induced by an incident alpha-beam has been
studied. The data are used to evaluate the feasibility of sensitive in-beam
experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.
Measurement of 25Mg(p; gamma)26Al resonance strengths via gamma spectrometry
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons
in the Galaxy, triggering considerable interest in determing the sources of
interstellar 26Al. The predicted 26Al is too low compared to the observation,
for a better understanding more accurate rates for the 25Mg(p; gamma)26Al
reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at
the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a
Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189
keV has been measured deep underground laboratory at Laboratori Nazionali del
Gran Sasso, exploiting the strong suppression of cosmic background. This low
resonance has been studied with the 400 kV LUNA accelerator and a HPGe
detector. The preliminary results of the resonance strengths will be reported.Comment: Accepted for publication in Journal of Physics
Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones
The NO cycle takes place in the deepest layer of a H-burning core or shell,
when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion
observed in some globular cluster giant stars, always associated with a Na
enhancement, may be due to either a deep mixing during the RGB (red giant
branch) phase of the star or to the pollution of the primordial gas by an early
population of massive AGB (asymptotic giant branch) stars, whose chemical
composition was modified by the hot bottom burning. In both cases, the NO cycle
is responsible for the O depletion. The activation of this cycle depends on the
rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction
rate at temperatures as low as experienced in H-burning zones in stellar
interiors is mandatory to understand the observed O abundances. We present a
new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering
for the first time the center of mass energy range 70-370 keV, which
corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106
K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive
H-burning taking place in the external layer of a nova and the one of the hot
bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the
present data, we are also able to confirm the result of the previous R-matrix
extrapolation. In particular, in the temperature range of astrophysical
interest, the new rate is about a factor of 2 smaller than reported in the
widely adopted compilation of reaction rates (NACRE or CF88) and the
uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure
Impact of a revised Mg(p,)Al reaction rate on the operation of the Mg-Al cycle
Proton captures on Mg isotopes play an important role in the Mg-Al cycle
active in stellar H-burning regions. In particular, low-energy nuclear
resonances in the Mg(p,)Al reaction affect the production
of radioactive Al as well as the resulting Mg/Al abundance ratio.
Reliable estimations of these quantities require precise measurements of the
strengths of low-energy resonances. Based on a new experimental study performed
at LUNA, we provide revised rates of the Mg(p,)Al
and the Mg(p,)Al reactions with corresponding
uncertainties. In the temperature range 50 to 150 MK, the new recommended rate
of the Al production is up to 5 times higher than previously
assumed. In addition, at T MK, the revised total reaction rate is a
factor of 2 higher. Note that this is the range of temperature at which the
Mg-Al cycle operates in an H-burning zone. The effects of this revision are
discussed. Due to the significantly larger Mg(p,)Al
rate, the estimated production of Al in H-burning regions is less
efficient than previously obtained. As a result, the new rates should imply a
smaller contribution from Wolf-Rayet stars to the galactic Al budget.
Similarly, we show that the AGB extra-mixing scenario does not appear able to
explain the most extreme values of Al/Al, i.e. , found
in some O-rich presolar grains. Finally, the substantial increase of the total
reaction rate makes the hypothesis of a self-pollution by massive AGBs a more
robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster
stars
Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations
Recently, the LUNA collaboration has carried out a high precision measurement
on the 3He(alpha,gamma)7Be reaction cross section with both activation and
on-line gamma-detection methods at unprecedented low energies. In this paper
the results obtained with the activation method are summarized. The results are
compared with previous activation experiments and the zero energy extrapolated
astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies
- …
