2,835 research outputs found
Disaster Resilience Education and Research Roadmap for Europe 2030 : ANDROID Report
A disaster resilience education and research roadmap for Europe 2030 has been launched. This roadmap represents an important output of the ANDROID disaster resilience network, bringing together existing literature in the field, as well as the results of various analysis and study projects undertaken by project partners.The roadmap sets out five key challenges and opportunities in moving from 2015 to 2030 and aimed at addressing the challenges of the recently announced Sendai Framework for Disaster Risk Reduction 2015-2030. This roadmap was developed as part of the ANDROID Disaster Resilience Network, led by Professor Richard Haigh of the Global Disaster Resilience Centre (www.hud.ac.uk/gdrc ) at the School of Art, Design and Architecture at the University of Huddersfield, UK. The ANDROID consortium of applied, human, social and natural scientists, supported by international organisations and a stakeholder board, worked together to map the field in disaster resilience education, pool their results and findings, develop interdisciplinary explanations, develop capacity, move forward innovative education agendas, discuss methods, and inform policy development. Further information on ANDROID Disaster Resilience network is available at: http://www.disaster-resilience.netAn ANDROID Disaster Resilience Network ReportANDROI
Metrics for measuring distances in configuration spaces
In order to characterize molecular structures we introduce configurational
fingerprint vectors which are counterparts of quantities used experimentally to
identify structures. The Euclidean distance between the configurational
fingerprint vectors satisfies the properties of a metric and can therefore
safely be used to measure dissimilarities between configurations in the high
dimensional configuration space. We show that these metrics correlate well with
the RMSD between two configurations if this RMSD is obtained from a global
minimization over all translations, rotations and permutations of atomic
indices. We introduce a Monte Carlo approach to obtain this global minimum of
the RMSD between configurations
Boundary Conditions on Internal Three-Body Wave Functions
For a three-body system, a quantum wave function with definite
and quantum numbers may be expressed in terms of an internal wave
function which is a function of three internal coordinates. This
article provides necessary and sufficient constraints on to
ensure that the external wave function is analytic. These
constraints effectively amount to boundary conditions on and its
derivatives at the boundary of the internal space. Such conditions find
similarities in the (planar) two-body problem where the wave function (to
lowest order) has the form at the origin. We expect the boundary
conditions to prove useful for constructing singularity free three-body basis
sets for the case of nonvanishing angular momentum.Comment: 41 pages, submitted to Phys. Rev.
Metric tensor as the dynamical variable for variable cell-shape molecular dynamics
We propose a new variable cell-shape molecular dynamics algorithm where the
dynamical variables associated with the cell are the six independent dot
products between the vectors defining the cell instead of the nine cartesian
components of those vectors. Our choice of the metric tensor as the dynamical
variable automatically eliminates the cell orientation from the dynamics.
Furthermore, choosing for the cell kinetic energy a simple scalar that is
quadratic in the time derivatives of the metric tensor, makes the dynamics
invariant with respect to the choice of the simulation cell edges. Choosing the
densitary character of that scalar allows us to have a dynamics that obeys the
virial theorem. We derive the equations of motion for the two conditions of
constant external pressure and constant thermodynamic tension. We also show
that using the metric as variable is convenient for structural optimization
under those two conditions. We use simulations for Ar with Lennard-Jones
parameters and for Si with forces and stresses calculated from first-principles
of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review
Negative Feedback Regulation of the Yeast Cth1 and Cth2 mRNA Binding Proteins Is Required for Adaptation to Iron Deficiency and Iron Supplementation
Iron (Fe) is an essential element for all eukaryotic organisms because it functions as a cofactor in a wide range of biochemical processes. Cells have developed sophisticated mechanisms to tightly control Fe utilization in response to alterations in cellular demands and bioavailability. In response to Fe deficiency, the yeast Saccharomyces cerevisiae activates transcription of the CTH1 and CTH2 genes, which encode proteins that bind to AU-rich elements (AREs) within the 3′ untranslated regions (3′UTRs) of many mRNAs, leading to metabolic reprogramming of Fe-dependent pathways and decreased Fe storage. The precise mechanisms underlying Cth1 and Cth2 function and regulation are incompletely understood. We report here that the Cth1 and Cth2 proteins specifically bind in vivo to AREs located at the 3′UTRs of their own transcripts in an auto- and cross-regulated mechanism that limits their expression. By mutagenesis of the AREs within the CTH2 transcript, we demonstrate that a Cth2 negative-feedback loop is required for the efficient decline in Cth2 protein levels observed upon a rapid rise in Fe availability. Importantly, Cth2 autoregulation is critical for the appropriate recovery of Fe-dependent processes and resumption of growth in response to a change from Fe deficiency to Fe supplementation
- …
