Abstract

For a three-body system, a quantum wave function Ψm\Psi^\ell_m with definite \ell and mm quantum numbers may be expressed in terms of an internal wave function χk\chi^\ell_k which is a function of three internal coordinates. This article provides necessary and sufficient constraints on χk\chi^\ell_k to ensure that the external wave function Ψm\Psi^\ell_m is analytic. These constraints effectively amount to boundary conditions on χk\chi^\ell_k and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form rmr^{|m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.Comment: 41 pages, submitted to Phys. Rev.

    Similar works