31 research outputs found

    Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants

    Get PDF
    The continuous need for high-performance implants that can withstand mechanical loads while promoting implant integration into bone has focused recent research on the surface modification of hard ceramics. Their properties of biocompatibility, high mechanical and fatigue resistance and aesthetic color have contributed to its succefull applications in dentistry. Alumina toughened Zirconia (ATZ) has been gaining attention as a material for dental implants applications due to its advanced mechanical properties and minimal degradation at body temperature. Still, in order to improve tissue response to this bioinert material, additional modifications are desirable. Improving the surface functionality of this ceramic could lead to enhanced implant-tissue interaction and subsequently, a successful implant integration.In this work, microtopographies were developed on the surface of Alumina toughened Zirconia using an ultrafast laser methodology, aiming at improving the cellular response to this ceramic. Microscale grooves and grid-like geometries were produced on ATZ ceramics by femtosecond laser ablation, with a pulse width of 150 fs, wavelength of 800 nm and repetition rate of 1 kHz. The variation of surface topography, roughness, chemistry and wettability with different laser processing parameters was examined.Cell-surface interactions were evaluated for 7 days on both microstructured surfaces and a non-treated control with pre-osteoblasts, MC3T3-E1 cells. Both surface topographies showed to improve cell response, with increased metabolic activity when compared to the untreated control and modulating cell morphology up to 7 days.The obtained results suggest that femtosecond laser texturing may be a suitable non-contact methodology for creating tunable micro-scale surface topography on ATZ ceramics to enhance the biological response

    Efficacy and cytotoxicity of binary mixtures as root canal filling solvents

    Get PDF
    Objectives: This study reports the efficacy of two solvent mixtures on the dissolution of gutta-percha and AH Plus sealer, together with the cytotoxicity. Methods: Methyl ethyl ketone (MEK), orange oil, tetrachloroethylene, MEK/tetrachloroethylene (1:1), MEK/orange oil (1:1), and chloroform (control) were tested. Twelve groups (n = 15) of standardized stainless-steel molds filled with softened gutta-percha cones and twelve (n = 15) filled with AH Plus were immersed in the corresponding mixture or individual solvent, in an ultrasonic bath, for either 2 or 5 min. The effect of the solvents was assessed qualitatively by a topographical analysis (scanning electron microscopy) and chemical analysis (Fourier transform infrared spectroscopy), and quantitatively by a weight loss and viscoelastic property (dynamic mechanical analysis) evaluation. The cytotoxicity was assessed on MG63 human osteoblastic cells. Results: The mixtures did not show the formation of new compounds. Both presented significantly higher efficacies compared to their individual solvents, suggesting a synergistic effect. Their dissolution efficacy was similar to that of chloroform, showing high cytocompatibility. Conclusions: The proposed strategy, incorporating ultrasound agitation and profiting from the synergy of adequate solvents, might enhance root canal cleanliness allowing a single-step procedure to dissolve gutta-percha and the sealer remnants, while assuring cytocompatibility with the periapical tissues.This article was supported by National Funds through FCT—Fundação para a Ciência e a Tecnologia,I.P.-V., within CINTESIS, R & D Unit (reference UIDB/4255/2020)

    A modular reactor to simulate biofilm development in orthopedic materials

    Get PDF
    Surfaces of medical implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue- or osseo-integration. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. To understand the mechanisms of bone tissue infection associated with contaminated biomaterials, a detailed understanding of bacterial adhesion and subsequent biofilm formation on biomaterial surfaces is needed. In this study, a continuous-flow modular reactor composed of several modular units placed in parallel was designed to evaluate the activity of circulating bacterial suspensions and thus their predilection for biofilm formation during 72 h of incubation. Hydroxyapatite discs were placed in each modular unit and then removed at fixed times to quantify biofilm accumulation. Biofilm formation on each replicate of material, unchanged in structure, morphology, or cell density, was reproducibly observed. The modular reactor therefore proved to be a useful tool for following mature biofilm formation on different surfaces and under conditions similar to those prevailing near human-bone implants. [Int Microbiol 2013; 16(3):191-198]Keywords: orthopedic materials · orthopedic conditions · modular reactors · continuous flow · biomaterials · biofilm formatio

    Amination of polymeric braid structures to improve tendon healing: an experimental comparison

    Get PDF
    Several polymers are researched for tendon repair as polyethylene terephthalate (PET) and polylactic acid (PLA). These are biocompatible and useful in scaffolding repair though with minimal success due to long-term failure. There is a need to improve such scaffolds' design and physical–chemical nature. This work concerns surface functionalization of polymeric braids (PET and PLA) that fulfill the high mechanical demands of tissues such as tendons. The functionalization aims to incorporate amine groups in the braids' surface, improve cell adhesion, and consequently, the poor healing rate of these tissues and the biointegration of the braids. Two approaches are compared: the direct application of NH3 plasma and the surface grafting of EDA after O2 plasma activation. X-ray photoelectron spectroscopy (XPS) shows that amine groups are effectively introduced onto the samples' surfaces. Besides, the plasma parameters chosen do not compromise the topography and tensile behavior of the braids. Resazurin assay and scanning electron microscopy show that the NH3 treatment improves cell–biomaterial interaction as improved cell adhesion and proliferation are observed. Both approaches are safe for biomedical applications. The NH3 plasma approach is more environmentally friendly, faster, and easier to scale-up, showing potential for application in the final hybrid medical devicepublishe

    Influence of PLLA/PCL/HA scaffold fiber orientation on mechanical properties and osteoblast behavior

    Get PDF
    Scaffolds based on aligned and non-aligned poly (L-lactic acid) (PLLA)/polycaprolactone (PCL) fibers obtained by electrospinning, associated to electrosprayed hydroxyapatite (HA) for tissue engineering applications were developed and their performance was compared in terms of their morphology and biological and mechanical behaviors. The morphological results assessed by scanning electron microscopy showed a mesh of PLLA/PCL fibers (random and perfectly aligned) associated with aggregates of nanophased HA. Fourier transform infrared spectrometry confirmed the homogeneity in the blends and the presence of nanoHA in the scaffold. As a result of fiber alignment a 15-fold increase in Young’s Modulus and an 8-fold increase in tensile strength were observed when compared to non-aligned fibers. In PLLA/PCL/HA scaffolds, the introduction of nanoHA caused a remarkable improvement of the mechanical strength of this material acting as a reinforcement, enhancing the response of these constructs to tensile stress. In vitro testing was evaluated using osteoblast (MC3T3-E1) cells. The results showed that both fibrous scaffolds were able to support osteoblast cell adhesion and proliferation and that fiber alignment induced increased cellular metabolic activity. In addition, the adhesion and proliferation of Staphylococcus aureus were evaluated and a lower number of colony forming units (CFUs) was obtained in the scaffolds with aligned fibers.info:eu-repo/semantics/publishedVersio

    Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts

    Get PDF
    Titanium-based materials are widely employed by the biomedical industry in orthopedic and dental implants. However, when placed into the human body, these materials are highly susceptible to degradation processes, such as corrosion, wear, and tribocorrosion. As a consequence, metallic ions or particles (debris) may be released, and although several studies have been conducted in recent years to better understand the effects of their exposure to living cells, a consensual opinion has not yet been obtained. In this work, we produced metallic based wear particles by tribological tests carried out on Ti-6Al-4V and Ti-15Zr-15Mo alloys. They were posteriorly physicochemically characterized according to their crystal structure, size, morphology, and chemical composition and compared to Ti-6Al-4V commercially available particles. Finally, adsorbed endotoxins were removed (by applying a specific thermal treatment) and endotoxin-free particles were used in cell experiments to evaluate effects of their exposure to human osteoblasts (MG-63 and HOb), namely cell viability/metabolism, proinflammatory cytokine production (IL-6 and PGE2), and susceptibility to internalization processes. Our results indicate that tribologically-obtained wear particles exhibit fundamental differences in terms of size (smaller) and morphology (irregular shapes and rough surfaces) when compared to the commercial ones. Consequently, both Ti-6Al-4V and Ti-15Zr-15Mo particles were able to induce more pronounced effects on cell viability (decrease) and cytokine production (increase) than did Ti-6Al-4V commercial particles. Furthermore, both types of wear particles penetrated osteoblast membranes and were internalized by the cells. Influences on cytokine production by endotoxins were also demonstrated.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (2015/50280-5 and 2017/24300-4), Fundacao para a Ciencia e Tecnologia - FCT (UID/EEA/04436/2013), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES (Finance Code 0001), FCT/CAPES Joint Research Project (99999.008666/2014-08), FCT COMPETE 2020 (POCI-01-0145-FEDER-006941 and POCI-01-0145-FEDER-007265) and M-ERA-NET (0001/2015)

    Nationwide access to endovascular treatment for acute ischemic stroke in portugal

    Get PDF
    Publisher Copyright: Copyright Ordem dos M dicos 2021.Introduction: Since the publication of endovascular treatment trials and European Stroke Guidelines, Portugal has re-organized stroke healthcare. The nine centers performing endovascular treatment are not equally distributed within the country, which may lead to differential access to endovascular treatment. Our main aim was to perform a descriptive analysis of the main treatment metrics regarding endovascular treatment in mainland Portugal and its administrative districts. Material and Methods: A retrospective national multicentric cohort study was conducted, including all ischemic stroke patients treated with endovascular treatment in mainland Portugal over two years (July 2015 to June 2017). All endovascular treatment centers contributed to an anonymized database. Demographic, stroke-related and procedure-related variables were collected. Crude endovascular treatment rates were calculated per 100 000 inhabitants for mainland Portugal, and each district and endovascular treatment standardized ratios (indirect age-sex standardization) were also calculated. Patient time metrics were computed as the median time between stroke onset, first-door, and puncture. Results: A total of 1625 endovascular treatment procedures were registered. The endovascular treatment rate was 8.27/100 000 inhabitants/year. We found regional heterogeneity in endovascular treatment rates (1.58 to 16.53/100 000/year), with higher rates in districts closer to endovascular treatment centers. When analyzed by district, the median time from stroke onset to puncture ranged from 212 to 432 minutes, reflecting regional heterogeneity. Discussion: Overall endovascular treatment rates and procedural times in Portugal are comparable to other international registries. We found geographic heterogeneity, with lower endovascular treatment rates and longer onset-to-puncture time in southern and inner regions. Conclusion: The overall national rate of EVT in the first two years after the organization of EVT-capable centers is one of the highest among European countries, however, significant regional disparities were documented. Moreover, stroke-onset-to-first-door times and in-hospital procedural times in the EVT centers were comparable to those reported in the randomized controlled trials performed in high-volume tertiary hospitalspublishersversionpublishe

    Acesso a Tratamento Endovascular para Acidente Vascular Cerebral Isquémico em Portugal

    Get PDF
    Introduction: Since the publication of endovascular treatment trials and European Stroke Guidelines, Portugal has re-organized stroke healthcare. The nine centers performing endovascular treatment are not equally distributed within the country, which may lead to differential access to endovascular treatment. Our main aim was to perform a descriptive analysis of the main treatment metrics regarding endovascular treatment in mainland Portugal and its administrative districts. Material and Methods: A retrospective national multicentric cohort study was conducted, including all ischemic stroke patients treated with endovascular treatment in mainland Portugal over two years (July 2015 to June 2017). All endovascular treatment centers contributed to an anonymized database. Demographic, stroke-related and procedure-related variables were collected. Crude endovascular treatment rates were calculated per 100 000 inhabitants for mainland Portugal, and each district and endovascular treatment standardized ratios (indirect age-sex standardization) were also calculated. Patient time metrics were computed as the median time between stroke onset, first-door, and puncture. Results: A total of 1625 endovascular treatment procedures were registered. The endovascular treatment rate was 8.27/100 000 inhabitants/year. We found regional heterogeneity in endovascular treatment rates (1.58 to 16.53/100 000/year), with higher rates in districts closer to endovascular treatment centers. When analyzed by district, the median time from stroke onset to puncture ranged from 212 to 432 minutes, reflecting regional heterogeneity. Conclusion: The overall national rate of EVT in the first two years after the organization of EVT-capable centers is one of the highest among European countries, however, significant regional disparities were documented. Moreover, stroke-onset-to-first-door times and in-hospital procedural times in the EVT centers were comparable to those reported in the randomized controlled trials performed in high-volume tertiary hospitals.Introdução: A aprovação do tratamento endovascular para o acidente vascular cerebral isquémico obrigou à reorganização dos cuidados de saúde em Portugal. Os nove centros que realizam tratamento endovascular não estão distribuídos equitativamente pelo território, o que poderá causar acesso diferencial a tratamento. O principal objetivo deste estudo é realizar uma análise descritiva da frequência e métricas temporais do tratamento endovascular em Portugal continental e seus distritos. Material e Métodos: Estudo de coorte nacional multicêntrico, incluindo todos os doentes com acidente vascular cerebral isquémico submetidos a tratamento endovascular em Portugal continental durante um período de dois anos (julho 2015 a junho 2017). Foram colhidos dados demográficos, relacionados com o acidente vascular cerebral e variáveis do procedimento. Taxas de tratamento endovascular brutas e ajustadas (ajuste indireto a idade e sexo) foram calculadas por 100 000 habitantes/ano para Portugal continental e cada distrito. Métricas de procedimento como tempo entre instalação, primeira porta e punção foram também analisadas. Resultados: Foram registados 1625 tratamentos endovasculares, indicando uma taxa bruta nacional de tratamento endovascular de 8,27/100 000 habitantes/ano. As taxas de tratamento endovascular entre distritos variaram entre 1,58 e 16,53/100 000/ano, com taxas mais elevadas nos distritos próximos a hospitais com tratamento endovascular. O tempo entre sintomas e punção femural entre distritos variou entre 212 e 432 minutos. Conclusão: Portugal continental apresenta uma taxa nacional de tratamento endovascular elevada, apresentando, contudo, assimetrias regionais no acesso. As métricas temporais foram comparáveis com as observadas nos ensaios clínicos piloto
    corecore