3,988 research outputs found

    The long road from local communities to professional sport and the culture of the global sport industry for indigenous Australians

    Get PDF
    This article draws on the findings of a three-year, inter-disciplinary study conducted on the journeys of sixteen Australian Indigenous sportsmen from their first touch of the ‘footy’ to the most elite levels of Australian football and rugby league and the central role of culture in these journeys. The first stage of their journeys involved the development of expertise and a distinctively Indigenous approach to their sport from early childhood to around the age of around thirteen. The second stage involved dealing with the challenges of cultural transitioning from small, local communities and practices to professional sport and the global culture of the sport industry

    Magnetothermodynamics: Measuring equations of state in a relaxed magnetohydrodynamic plasma

    Get PDF
    We report the first measurements of equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.Comment: 4 pages, 4 figure

    Learning and interaction in groups with computers: when do ability and gender matter?

    Get PDF
    In the research reported in this paper, we attempt to identify the background and process factors influencing the effectiveness of groupwork with computers in terms of mathematics learning. The research used a multi-site case study design in six schools and involved eight groups of six mixed-sex, mixed-ability pupils (aged 9-12) undertaking three research tasks – two using Logo and one a database. Our findings suggest that, contrary to other recent research, the pupil characteristics of gender and ability have no direct influence on progress in group tasks with computers. However, status effects – pupils' perceptions of gender and ability – do have an effect on the functioning of the group, which in turn can impede progress for all pupils concerned

    Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.

    Get PDF
    BackgroundEndophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed.MethodsParticipants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year.ResultsMost neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria.ConclusionsThe majority of neurophysiological and neurocognitive measures exhibited deficits in patients, stability over a 1-year interval and did not demonstrate practice or time effects supporting their use as endophenotypes in neural substrate and genomic studies. These measures hold promise for informing the "gene-to-phene gap" in schizophrenia research

    The breakdown of the municipality as caring platform: lessons for co-design and co-learning in the age of platform capitalism

    Get PDF
    If municipalities were the caring platforms of the 19-20th century sharing economy, how does care manifest in civic structures of the current period? We consider how platforms - from the local initiatives of communities transforming neighbourhoods, to the city, in the form of the local authority - are involved, trusted and/or relied on in the design of shared services and amenities for the public good. We use contrasting cases of interaction between local government and civil society organisations in Sweden and the UK to explore trends in public service provision. We look at how care can manifest between state and citizens and at the roles that co-design and co-learning play in developing contextually sensitive opportunities for caring platforms. In this way, we seek to learn from platforms in transition about the importance of co-learning in political and structural contexts and make recommendations for the co-design of (digital) platforms to care with and for civil society

    Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells

    Full text link
    Spatial modulation microscopy is a technique originally developed for quantitative spectroscopy of individual nano-objects. Here, a parallel implementation of the spatial modulation microscopy technique is demonstrated based on a line detector capable of demodulation at kHz frequencies. The capabilities of the imaging system are shown using an array of plasmonic nanoantennas and dendritic cells incubated with gold nanoparticles.Comment: 3 pages, 4 figure

    Density-potential mappings in quantum dynamics

    Full text link
    In a recent letter [Europhys. Lett. 95, 13001 (2011)] the question of whether the density of a time-dependent quantum system determines its external potential was reformulated as a fixed point problem. This idea was used to generalize the existence and uniqueness theorems underlying time-dependent density functional theory. In this work we extend this proof to allow for more general norms and provide a numerical implementation of the fixed-point iteration scheme. We focus on the one-dimensional case as it allows for a more in-depth analysis using singular Sturm-Liouville theory and at the same time provides an easy visualization of the numerical applications in space and time. We give an explicit relation between the boundary conditions on the density and the convergence properties of the fixed-point procedure via the spectral properties of the associated Sturm-Liouville operator. We show precisely under which conditions discrete and continuous spectra arise and give explicit examples. These conditions are then used to show that in the most physically relevant cases the fixed point procedure converges. This is further demonstrated with an example.Comment: 20 pages, 8 figures, 3 table

    Crater Morphometry and Scaling in Coarse, Rubble-Like Targets: Insights from Impact Experiments

    Get PDF
    Spacecraft images reveal that the asteroids Itokawa, Ryugu, and Bennu are covered with coarse, boulder-rich material [13]. Impactors that collide with these bodies encounter a target with extreme physical heterogeneity. Other bodies can also possess significant physical heterogeneity (e.g., megaregolith, layering, etc.). Such heterogeneities establish free surfaces and impedance contrasts that can affect shock propagation and attenuation. Therefore, such heterogeneities may also affect crater formation and excavation [4], melt generation [57] and crater scaling [4]. As described by [8,9], the extent to which target heterogeneity affects crater formation likely depends on how the length scale, d, of the heterogeneity (e.g., boulder size on a rubble-pile asteroid) compares to the width of the shock, w, generated by impact. Here we further test this hypothesis using impact experiments across a broad range of impact velocities and target grain sizes to systematically vary the ratio between the width of the shock and the diameter of target grains
    • …
    corecore