49 research outputs found

    The 2014 M_w 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow Asperity and Rapid Afterslip

    Get PDF
    The Mw 6.1 South Napa earthquake occurred near Napa, California, on 24 August 2014 at 10:20:44.03 (UTC) and was the largest inland earthquake in northern California since the 1989 Mw 6.9 Loma Prieta earthquake. The first report of the earthquake from the Northern California Earthquake Data Center (NCEDC) indicates a hypocentral depth of 11.0 km with longitude and latitude of (122.3105° W, 38.217° N). Surface rupture was documented by field observations and Light Detection and Ranging (LiDAR) imaging (Brooks et al., 2014; Hudnut et al., 2014; Brocher et al., 2015), with about 12 km of continuous rupture starting near the epicenter and extending to the northwest. The southern part of the rupture is relatively straight, but the strike changes by about 15° at the northern end over a 6 km segment. The peak dextral offset was observed near the Buhman residence with right‐lateral motion of 46 cm, near the location where the strike of fault begins to rotate clockwise (Hudnut et al., 2014). The earthquake was well recorded by the strong‐motion network operated by the NCEDC, the California Geological Survey and the U.S. Geological Survey (USGS). There are about 12 sites within an epicentral distance of 15 km that had relatively good azimuthal coverage (Fig. 1). The largest peak ground velocity (PGV) of nearly 100  cm/s was observed on station 1765, which is the closest station to the rupture and lies about 3 km east of the northern segment (Fig. 1). The ground deformation associated with the earthquake was also well recorded by the high resolution COSMO–SkyMed (CSK) satellite and Sentinel-1A satellite, providing independent static observations

    Surface Rupture of the November 2002 M7.9 Denali Fault Earthquake, Alaska, and Comparison to Other Strike-Slip Ruptures

    Get PDF
    On November 3, 2002, a moment-magnitude (Mw) 7.9 earthquake produced 340 km of surface rupture on the Denali fault and two related faults in central Alaska. The rupture, which proceeded from west to east, began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust were 3-6 m. Next came the principal surface break, along 220 km of the Denali fault. There, right-lateral offset averaged almost 5 m and increased eastward to a maximum of nearly 9 m. Finally, slip turned southeastward onto the Totschunda fault, where dextral offsets up to 3 m continued for another 70 km. This three-part rupture ranks among the longest documented strike-slip events of the past two centuries. The surface-slip distribution supports and clarifies models of seismological and geodetic data that indicated initial thrusting followed by rightlateral strike slip, with the largest moment release near the east end of the Denali fault. The Denali fault ruptured beneath the Trans-Alaska oil pipeline. The pipeline withstood almost 6 m of lateral offset, because engineers designed it to survive such offsets based on pre-construction geological studies. The Denali fault earthquake was typical of large-magnitude earthquakes on major intracontinental strike-slip faults, in the length of the rupture, the multiple fault strands that ruptured, and the variable slip along strike

    Surface Rupture and Slip Distribution of the Denali and Totschunda Faults

    Get PDF
    The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slipdistribution data can be used to infer moment release along other active fault traces.PublishedS23–S52reserve

    Implications for prediction and hazard assessment from the 2004 Parkfield earthquake

    Get PDF
    Obtaining high-quality measurements close to a large earthquake is not easy: one has to be in the right place at the right time with the right instruments. Such a convergence happened, for the first time, when the 28 September 2004 Parkfield, California, earthquake occurred on the San Andreas fault in the middle of a dense network of instruments designed to record it. The resulting data reveal aspects of the earthquake process never before seen. Here we show what these data, when combined with data from earlier Parkfield earthquakes, tell us about earthquake physics and earthquake prediction. The 2004 Parkfield earthquake, with its lack of obvious precursors, demonstrates that reliable short-term earthquake prediction still is not achievable. To reduce the societal impact of earthquakes now, we should focus on developing the next generation of models that can provide better predictions of the strength and location of damaging ground shaking

    Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault

    Get PDF
    The Hayward fault in the San Francisco Bay Area (SFBA) is sometimes considered unusual among continental faults for exhibiting significant aseismic creep during the interseismic phase of the seismic cycle while also generating sufficient elastic strain to produce major earthquakes. Imaging the spatial variation in interseismic fault creep on the Hayward fault is complicated because of the interseismic strain accumulation associated with nearby faults in the SFBA, where the relative motion between the Pacific plate and the Sierra block is partitioned across closely spaced subparallel faults. To estimate spatially variable creep on the Hayward fault, we interpret geodetic observations with a three-dimensional kinematically consistent block model of the SFBA fault system. Resolution tests reveal that creep rate variations with a length scale of \u3c15 km are poorly resolved below 7 km depth. In addition, creep at depth may be sensitive to assumptions about the kinematic consistency of fault slip rate models. Differential microplate motions result in a slip rate of 6.7 ± 0.8 mm/yr on the Hayward fault, and we image along-strike variations in slip deficit rate at ∌15 km length scales shallower than 7 km depth. Similar to previous studies, we identify a strongly coupled asperity with a slip deficit rate of up to 4 mm/yr on the central Hayward fault that is spatially correlated with the mapped surface trace of the 1868 MW = 6.9–7.0 Hayward earthquake and adjacent to gabbroic fault surfaces

    Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

    Get PDF
    The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions
    corecore