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Surface Rupture of the November 2002 M7.9
Denali Fault Earthquake, Alaska, and
Comparison to Other Strike-Slip Ruptures

Peter J. Haeussler,a) David P. Schwartz,b) Timothy E. Dawson,b) Heidi D.
Stenner,b) James J. Lienkaemper,b) Francesca Cinti,c) Paola Montone,c)

Brian Sherrod,d) and Patricia Craw e)

 On November 3, 2002, a moment-magnitude (Mw) 7.9 earthquake produced

340 km of surface rupture on the Denali fault and two related faults in central

Alaska. The rupture, which proceeded from west to east, began with a 40-km-long

break on a previously unknown thrust fault. Estimates of surface slip on this thrust

were 3-6 m. Next came the principal surface break, along 220 km of the Denali

fault. There, right-lateral offset averaged almost 5 m and increased eastward to a

maximum of nearly 9 m. Finally, slip turned southeastward onto the Totschunda

fault, where dextral offsets up to 3 m continued for another 70 km. This three-part

rupture ranks among the longest documented strike-slip events of the past two

centuries. The surface-slip distribution supports and clarifies models of

seismological and geodetic data that indicated initial thrusting followed by right-

lateral strike slip, with the largest moment release near the east end of the Denali

fault. The Denali fault ruptured beneath the Trans-Alaska oil pipeline. The

pipeline withstood almost 6 m of lateral offset, because engineers designed it to

survive such offsets based on pre-construction geological studies. The Denali

fault earthquake was typical of large-magnitude earthquakes on major

intracontinental strike-slip faults, in the length of the rupture, the multiple fault

strands that ruptured, and the variable slip along strike.
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INTRODUCTION

The moment magnitude Mw7.9 Denali fault earthquake (Eberhart-Phillips et al., 2003) on

3 November 2002 was the largest strike-slip earthquake in North America in almost 150

years. The Denali fault earthquake ruptured beneath the Trans-Alaska Pipeline System

(TAPS), in the first real test of a structure designed to allow fault offset. The pipeline, which

transports about a million barrels of oil per day, performed according to design. It did not

spill oil because pre-construction geologic and geotechnical studies correctly anticipated the

consequences of an earthquake similar to the one of 3 November 2002 (Woodward-Lundgren

Associates, 1974). This paper provides an overview of the surface faulting and slip

distribution during the 2002 earthquake and compares this rupture to other large-magnitude

strike-slip ruptures.

The earthquake occurred on a system of active intracontinental faults that accommodate a

fraction of the oblique collision of the Yakutat terrane into the southern Alaska margin (Fig.

1). The collision is driven by northwest-dipping subduction at nearly 5 m per century along

the Aleutian megathrust. Great earthquakes (M≥8) in the 20th century, including the 1964

M9.2 earthquake, resulted from slip along the megathrust (Plafker, 1969). North and west of

the Yakutat terrane collision zone, active crustal thrust and strike-slip faults accommodate

westward escape of part of southern Alaska, shown by arrows on Figure 1 (Lahr and Plafker,

1980; Plafker et al.,1994; Haeussler et al., 2000). The Denali and Totschunda faults (St.

Amand, 1957; Grantz, 1966; Richter and Matson, 1971) are the principal elements in an

intracontinental dextral strike-slip fault system that curves across Alaska and western Canada

and passes through the Alaska Range (Fig. 1). Only the Totschunda fault and segments of the

Denali fault in the central and eastern Alaska Range have demonstrable pre-2002 active

strike-slip displacement (Richter and Matson, 1971; Plafker et al., 1977, 1994).

The 3 November 2002 M7.9 earthquake was preceded by a M6.7 event on 23 October,

2002, which occurred ~22 km west of the M7.9 epicenter. The October earthquake, which is

now considered to be a foreshock, occurred on the Denali fault trace, had aftershocks along

the fault trace, and had a right-lateral focal mechanism (Alaska Earthquake Information

Center (AEIC)). Wright et al. (2003) find excellent fit to Radarsat-1 interferograms using 1 m

of offset during the earthquake. We overflew the epicentral region of the M6.7 event in a

fixed wing aircraft on the day of the earthquake. The ground was snow covered, however, we

saw no evidence of surface rupture.



DESCRIPTION OF SURFACE RUPTURE

The 3 November 2002 rupture progressed along three faults. From west to east, these are

the Susitna Glacier, Denali, and Totschunda faults (Fig. 2). Inversions of teleseismic and

strong motion records indicate the 3 November M7.9 event initiated by thrusting, followed

by an eastward propagating unilateral rupture (Kikuchi and Yaminaka, 2002; Eberhart-

Phillips et al., 2003). This unilateral rupture resulted in extreme directivity of seismic energy

southeast of the rupture (Eberhart-Phillips et al., 2003; Hanson and Ratchkovski, this

volume), and produced earthquake-related effects from Pennsylvania to Louisiana to

Washington state. The westernmost surface rupture occurred on a previously unrecognized

thrust fault named for the Susitna Glacier (Fig. 2). The broad arc of this initial rupture

extends about 40 km along the southern flank of the Alaska Range. The convoluted surface

trace is about 48 km long. The eastern end of the Susitna Glacier fault appears to connect

with the Denali fault beneath the Susitna Glacier. On parts of the Susitna Glacier the surface

rupture paralleled arcuate medial moraines, which indicates the glacier ice at least locally

influenced the fault trace. Scarps seen on air photos suggest one or two previous Holocene

events, but the westward extent of the Susitna Glacier fault beyond the 2002 rupture is

unknown.

The principal rupture accompanying the 2002 earthquake is a 218-km break that

reoccupied older fault scarps along the Denali fault. The western terminus of this rupture is

about 15 km east of the epicenter and 10 km west of the intersection of the Denali and

Susitna Glacier faults (Fig. 2). There was one 6.4-km-long WNW-striking splay that ruptured

along the south side of the fault near Gillett Pass. Fault rupture through a glacier was reported

in only one other earthquake - the1958 Fairweather fault earthquake, Alaska, where a 2 m

dextral offset occurred on the Grand Plateau Glacier (Plafker et al., 1978).

At the eastern limit of rupture on the Denali fault, surface faulting stepped

14southeastward onto the Totschunda fault across a complex, 14-km-long transfer zone. The

Denali fault did not break east of this intersection. There is, however, geomorphic expression

of late Quaternary faulting farther southeast along the Denali fault (Clague, 1979). The

transfer zone is characterized by a series of right-stepping fault segments, which are

connected by north-striking east-side-up normal faults with displacements as large as 2.7 m,

and a 7.9-km-long splay off the main trace of the Totschunda fault. The Totschunda surface

ruptures extended a total of 76 km southeastward along the fault , mostly in a narrow zone of

dextral offset. The rupture comprised the 14-km long transition zone, 53 km along the main



Totschunda Creek segment of the fault, 8 km along the Cooper Creek segment (Richter,

1975), and two areas without surface rupture, 2-km and 4-km long, which link the fault

segments (Fig. 2).

The width of the zone of deformation along the strike-slip rupture was typically very

narrow—no more than a few meters wide--where the fault trace was ‘on land’ (i.e. not

through glacier ice) (Fig. 3D, 3E). Locally, where there were en echelon surface breaks, the

zone of deformation was tens of meters wide. The zone of deformation reached

approximately 100-m wide at the two locations where the fault displaced roads. These

locations were along the Richardson Highway (and the TAPS) and the Tok Cutoff Highway.

Both of these transportation corridors are in valleys with thick saturated Quaternary fill.

Despite the wide zone of deformation in both places, most deformation was concentrated in a

much narrower zone immediately adjacent to the fault trace, with only minor deflection of

the roadbed observed more than 10 m from the fault trace. Along the Richardson Highway,

the width of the concentrated zone of deformation was about 4 m, along the Tok Cutoff

Highway, the width of the zone was about 20 m.

The fault trace varied from narrow to wide where the fault ruptured through glacier ice.

For example, near the toe of the Canwell Glacier the fault trace was very linear and crossed

crevasses with no deflection (Fig. 3G). On other glaciers, fault strands parallelled medial

moraines (Fig. 3H), indicating the glacier ice influenced the surface trace. Complex fracture

patterns cut across the ice fabric and connected multiple fault strands in some places. Thus,

the glacier-ice fault traces did not always faithfully record the surface trace as well as off ice

localities.

We examined the fault trace and measured offset features in November 2002 immediately

after the earthquake, and also in July 2003. Along the fault, we observed numerous types of

dextrally offset features. These included stream channels, channel banks, channel levees,

channel thalwegs, tree roots, game trails, split cobbles, avalanche chute margins, glacier

crevasses, and matching faces in glacial ice. We observed extensional and contractional

stepovers, en echelon fissures, and Riedel shears in snow and glacier ice. We also found

liquefaction of unconsolidated sediment near the fault trace in valley bottoms (see also Kayan

et al., this volume).

The distribution of measured surface slip, both lateral and vertical, is shown on Figure 4.

Uncertainties in slip measurements reflect uncertainties in piercing points and difficulties in

projecting irregular offset features across the rupture zones. For the lateral offsets, we



characterized the slip distribution by enclosing the measurements within an envelope defined

by the highest values. The overall distribution of slip along the Denali fault is asymmetric

with higher slip to the east, and lower slip on the Totschunda fault (Fig. 4A). Right-lateral

offset on the Denali fault dominates the slip distribution, with an average value of 4.9 m, and

a maximum of 8.8 m 190 km east of the epicenter. The offset drops to zero abruptly at both

ends. Offsets along the Totschunda fault are modest, by comparison. The average dextral

offset is 1.7 m and the maximum is 3.1 m. Vertical slip on the Denali fault averaged 15% of

the horizontal, and was dominantly north-side-up from the Totschunda fault to the

intersection with the Susitna Glacier fault (Figure 4).

Large vertical slip along the Denali and Totschunda ruptures occurred where there were

large horizontal offsets (Fig. 4B). The sense of vertical slip from measurements taken on

glaciers is much more scattered than those taken off on land. Because ruptures through the

glaciers commonly were diffuse and complex, we suggest that the vertical slip data from off-

glacier sites is more reliable. Thus, looking only at the ‘land’ sites, the Denali fault has

dominantly north-side-up slip from the Richardson Highway region to the Totschunda

transition. Only the westernmost ‘land’ sites are south-side up. The vertical component of

slip on Totschunda fault is a mixture of northeast and southwest-side up.

Thrusting on the Susitna Glacier fault raised the north side relative to the south. Scarp

heights were typically 1 to 3-m high, with a maximum of 4.3-m (Craw et al., 2003). Two

direct observations of fault dip were 10˚ and 25˚. Steeper fault dips of 48-75° were observed

in glacier ice, but this was subparallel to, and probably influenced by, the ice fabric. Craw et

al. (2003) estimate the dip slip, based on the near-surface dips and the scarp heights, to be 3-6

m. Lu et al. (2003) modeled the Susitna Glacier fault from Radarsat-derived interferograms.

Their best-fit strike, dip, and rake were 251°, 40°, and 88°, respectively. First-motion analysis

by the Alaska Earthquake Information Center (AEIC) gave an orientation of strike, dip, and

rake of 262°, 48°, and 115°, and Kikuchi and Yamanaka (2002) obtained a strike, dip and

rake of 227°, 40°, 99° from waveform inversion. The strike of the surface trace of the Susitna

Glacier fault (249°) is closest to the interferogram modeling. The surface dip is shallower

than that indicated by the teleseismic and interferometric models. Lu et al.’s (2003) best-fit

uniform-slip model has 7 m of slip on the Susitna Glacier fault between 1.0 and 10.1 km

depth, and a length of the fault zone of 20 km. This fault length is substantially shorter than

the 40 km surface trace of the fault, and the slip value is significantly more than the 3-6 m

derived from the typical scarp height and shallowest dips.



INTERPRETATION OF SLIP DISTRIBUTION

The slip distribution is critical data for a complete understanding of an earthquake. It

provides direct observations of the source parameters for the earthquake and is not dependent

upon the location, quality, and density of seismic instruments surrounding the rupture. Large-

wavelength changes in surface slip values provide a physical basis for understanding the

location and magnitude of seismologically interpreted sub-events.

The seismic moments calculated from teleseismic waveforms (M7.9, NEIC) agree well

with the moment calculated from the average surface slip (M7.8). This calculation assumes

an average of 4.9 m of right-slip on the Denali fault, 1.7 m of right slip on the Totschunda

fault, and of 5 m of dip slip on a 30 km long part of the Susitna Glacier fault. The calculation

also uses a depth of 11 km for the base of crustal seismicity, which is the base of well-

defined aftershocks on the Denali fault. The average slip would have to be increased from 4.9
to 7.0 m on the Denali fault to yield a M7.9 earthquake.

There is some correlation between the source parameters of the earthquake from strong

motion and GPS data and from the fault trace and slip distribution. In Eberhart-Phillips et al.

(2003), the correlation appears remarkably good between the GPS, strong motion, and slip

distribution data. Subsequent modelling of the strong motion (Frankel et al., 2003) and GPS

(Hreinsdottir et al., 2003) data sets results in similar broad correlation with the slip

distribution. However, in detail, our slip distribution does not correlate as well with the GPS

and strong motion data. This relationship suggests either surface slip does not reflect slip at

depth, or the models are not sufficiently refined. Nonetheless, all the models show large slip

or moment release at the eastern end of the Denali fault, where the lateral surface slip

averages 7.2 m between 160-210 km east of the epicenter.

Although there was not nearly as good an appreciation of how slip can vary along the

length of fault ruptures, Woodward-Lundgren Associates (1974) made a remarkably good

estimate of the magnitude of slip in a future Denali fault rupture. The TAPS was designed to

accommodate 6.1 m right-lateral slip and 1.5 m vertical slip. Post-earthquake surveys

indicate a total of 5.8 m of dextral slip across the fault zone (M. Metz, personal comm.,

2003). The preconstruction geotechnical surveys had difficulty locating the fault trace in the

vicinity of the pipeline, because the fault scarp is poorly expressed in the area (Woodward

Lundgren Associates, 1974), and thus the pipeline was built with a 1-km wide zone built to



accommodate surface offset. The 2002 surface rupture was at the southernmost end of the

special fault crossing zone.  The accuracy of this forecast of the location and magnitude of

slip demonstrates the importance and value of earthquake science in engineering design and

risk mitigation.

Table 1. Summary of rupture parameters associated with each earthquake

FAULT EARTHQUAKE YEAR Mw LENGTH (km) Dmax
(m)

Davg
(m)

COMPLEXITY REFERENCE

San Andreas
fault,
California

San Francisco 1857 7.9 300 9.5 5.5 No known
associated

rupture

Sieh, 1978

Bulnay fault,
Mongolia

Bulnay fault 1905 8.0 375 11 8 Thrust faulting Baljinnyam et al
(1993); Schwartz et
al (1999)

San Andreas
fault,
California

San Francisco 1906 7.8 470 6.4 5 No known
associated

rupture

Lawson (1908)

Haiyuan
fault, China

Haiyuan fault 1920 7.9 240 10 -- No known
associated

rupture

Deng et al (1986)

North
Anatolian
fault, Turkey

Erzincan 1939 7.9 327 7.6 4.7 No known
associated

rupture

Barka (1996)

Bogd fault,
Mongolia

Gobi Altay 1957 7.8 260 8 4.5 Thrust faulting Florensov and
Solenenko (1965);
Baljinnyam et.
al.(1993)

Kunlun fault,
Tibet

Kunlunshan 2001 7.8 350 7.6 4 Multiple strands
in a wide zone

Xu et al (2002)

Denali fault,
Alaska

Denali fault 2002 7.9 300(strike-slip);
340 (total)

8.8 4.9 Thrust faulting Eberhardt-Phillips
etal (2002); this
paper

COMPARISON TO OTHER LARGE STRIKE-SLIP RUPTURES

The M7.9 Denali fault earthquake ranks among the largest strike-slip ruptures during the

past century and a half. Its rupture length, average and maximum slip, and magnitude are

comparable with only a handful of earthquakes that have occurred in the shallow crust around

the world since 1850 (Table 1). These earthquakes include:1857 central San Andreas,

California; 1905 Bulnay, Mongolia; 1906 San Francisco, California; 1922 Haiyuan, China;

1939 Erzincan, Turkey; 1957 Gobi Altay, Mongolia; and 2001 Kunlun, Tibet. The rupture

parameters associated with each of these earthquakes are summarized in Table 1. Long

strike-slip faults, such as these, have a well-defined surface expression that developed from

repeated large-slip earthquakes, and typically produce relatively narrow and simple surface



fault traces. For some of these historical earthquakes, coseismic rupture also occurred on

associated faults, which are commonly large thrust faults. This is the case for the 1905

Bulnay (Teregtiyn thrust) and 1957 Gobi-Altay (Toromhohn, Gurvan-Bulag,and Dalam-Turu

thrusts), Mongolia earthquakes as well as the 2002 Denali (Susitna Glacier thrust) event. This

phenomenon should be considered when evaluating hazards from other large strike-slip

faults. Although it is less well documented for the older surface ruptures (Table 1), slip is

also variable along their length.

Wells and Coppersmith (1994) examined empirical relationships between earthquake

magnitude, rupture length, rupture width, rupture area, and surface displacement. Their

regressions are commonly used in seismic hazard analysis to estimate the expected size of

future earthquakes from observations or inferences of fault parameters. The best correlation

between the fault parameters is the relationship between rupture area (fault length x fault

width) and moment magnitude (M). However, the relationship increasingly underestimates M

for larger rupture areas (Fig. 5). Hanks and Bakun (2002) updated the Wells and Coppersmith

(1994) database with additional information about large strike-slip earthquakes (including

those listed in Table 1, minus the Denali fault earthquake), and concluded that two lines

better fit a regression of the data. The Denali fault earthquake provides another data point for

assessing these relations (Fig. 5). We assume a width of the Denali fault zone as 12 km,

based on the depth of aftershocks (Ratchkovski and Hansen, 2003) and a fault length of 340

km. This probably slightly underestimates the fault area associated with the Susitna Glacier

fault, but it does not change the position of the datapoint on the magnitude versus area plot

perceptibly (Fig. 5). The Denali fault earthquake plots in the same field of data as other

earthquakes with a similar magnitude and rupture area, near the Hanks and Bakun (2002)

regression line, and above the Wells and Coppersmith (1994) regression line, which would

have yielded a M of 7.6.

The 2002 Denali fault earthquake can help us understand the effects expected in future

large strike-slip earthquakes. For example, the southern section of the San Andreas fault

between San Bernardino and the Salton Sea (Coachella Valley segment) and the Denali fault

west of the 2002 epicenter have lengths of several hundred kilometers and large single-event

paleoearthquake offsets. Both of these faults are expected to produce earthquakes with a

magnitude, rupture length, and offset similar to the 2001 Denali event. The unilateral rupture

of the 2002 Denali fault earthquake brings up an additional issue of the directivity of the

rupture. Future engineering studies should consider directivity effects of large earthquakes.



CONCLUDING REMARKS

The Denali fault earthquake surface rupture reoccupied previous scarps along the Denali

and Totschunda faults. The coincident surface ruptures confirm the notion that the location,

and possibly the offset in future earthquakes can be learned from past ones. Moreover,
historical records of slip along surface ruptures provide direct observations that relate to the

amount of energy released along a fault. The slip distribution along the Denali and
Totschunda faults from the November 2002 M7.9 earthquake is an important data set for

considering surface offset of large strike-slip faults around the world. Geologists and

engineers should consider variable slip along the strike of the rupture, potential directivity
effects, as well as the structural complexities of the rupture.
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Figure 1. Tectonic setting of the Denali fault in southern Alaska. The Yakutat terrane is colliding
with the southern Alaska margin, causing faulting into interior Alaska (Lahr and Plafker, 1980).
Arrows with bars behind them show the relative motion between the Pacific plate and North America
and the Yakutat terrane and North America. Open arrows show the motion of the Wrangell Block
with respect to North America.

Figure 2. Rupture map of the 2002 Denali fault earthquake. Epicenter of 3 November 2002
mainshock is shown by the star on the left. TCS, Totschunda Creek strand of the Totschunda fault;
CCS, Cooper Creek strand of the Totschunda fault.

Figure 3. Photographs of the surface ruptures. All photographs taken in November of 2002, except
for (E), which were taken in July of 2003. A) Susitna Glacier thrust fault on the Susitna Glacier. The
fault was discovered near here. View is toward the southwest. B) Susitna Glacier fault, southwest of
the Susitna Glacier. View is toward the northeast. Scarp is 1.5-2 m tall. C) Susitna Glacier fault scarp.
Note the small birch tree, behind the stadia rod, which was overthrust by the fault. Also, note the
extensional cracks in the snowpack, caused by the tip of the thrust rolling over. Marked gradations on
stadia rod are decimeters. D) Denali fault trace. Note the narrow mole track, linear trace, and the
Riedel shears in the snow pack indicating right-lateral shear. The lack of cracks more than a few
meters from the fault trace indicates little deformation occurred away from the main rupture. View is
toward the east and Gillett Pass. The fault takes a step to the right (north) at the pass. E) Denali fault
trace in the Slate Creek area. Note linear fault trace and lack of defomation off the fault trace. View is
toward the west. F) Totschunda fault trace, near its southern extent. Like the Denali fault, the trace is
straight with little evidence of shearing away from the surface rupture. View is toward the southeast.
G) Denali fault trace on the Canwell glacier. The fault trace cuts across crevasses in the center of the
photo, and shows how the fault trace through glacier ice can be simple, narrow, and apparently not
influenced by glacial ice fabric. View is toward the east. H) Denali fault trace showing a complex
fault trace on glacial ice. Thin black dashed lines parallel surface breaks. Note how the fault trace
parallels the medial moraines, and the complex pattern between multiple fault strands. This indicates
the glacial ice fabric influences the surface trace.

Figure 4. Slip distribution along the Denali and Totschunda faults. A) Horizonta slipl. A line that runs
through the largest measured values is shown, and labeled as “Envelope of Maximum Slip.” B)



Vertical slip. Data from Eberhart-Phillips et al. (2003) and Haeussler et al. (in prep). For preliminary
Susitna Glacier fault data, not shown here, see Craw et al. (2003).

Figure 5. Plot of moment magnitude (M) versus log of rupture area (A) of strike-slip earthquakes,
modified from Hanks and Bakun (2002). Denali fault earthquake is denoted by grey star. Regression
line of Wells and Coppersmith  (1994) is shown by dashed grey line labeled (WC94). This line
underestimates the magnitude of earthquakes larger than magnitude 7. Regression lines of Hanks and
Bakun (2002) shown by solid grey lines labeled (HB02).

Table 1. Comparison of surface rupture parameters of large strike-slip earthquakes. Moment
magnitude (Mw) is either instrumentally determined or estimated from fault parameters. Length is the
measured strike-slip surface rupture; Dmax is the maximum observed surface offset; Davg is the
average slip for the entire rupture based on surface slip distribution; complexity is the occurrence of
coseismic surface rupture on associated faults.
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