541 research outputs found

    Pseudo-binary phase diagram for Zr-based in situ ß phase composites

    Get PDF
    The pseudo-binary (quasi-equilibrium) phase diagram for Zr-based bulk metallic glasses with crystalline in situ precipitates (ß phase) has been constructed from high-temperature phase information and chemical composition analysis. The phase evolution was detected in situ by high-energy synchrotron x-ray diffraction followed by Rietveld analysis of the data for volume fraction estimation. The phase diagram delineates phase fields and allows the control of phase fractions. Combined with related previous work by the authors, this diagram offers a unique opportunity to control both the morphology and volume of the dendritic ß phase precipitates to enhance the properties of the composites

    The effects of recruitment to direct predator cues on predator responses in meerkats

    Get PDF
    Behavioral responses of animals to direct predator cues (DPCs; e.g., urine) are common and may improve their survival. We investigated wild meerkat (Suricata suricatta) responses to DPCs by taking an experimental approach. When meerkats encounter a DPC they often recruit group members by emitting a call type, which causes the group members to interrupt foraging and approach the caller. The aim of this study was to identify the qualities of olfactory predator cues, which affect the strength of response by meerkats, and determine the benefits of responses to such cues. Experimental exposure to dog (Canis lupus) urine as a DPC revealed that the recruited individuals increased vigilance to fresh urine in comparison to older urine, whereas a higher quantity of urine did not induce such an effect. Both freshness and higher quantities increased the proportion of group members recruited. These results indicate that recruitment might play a crucial role in correctly assessing the current level of danger and that recruiting might facilitate group decision making. To test the prediction that the reaction to a DPC enhances early predator response, we presented a DPC of a predator and a control cue of a herbivore, and each time simultaneously moved a full-mounted caracal (Caracal caracal) in the vicinity of the group. Meerkats responded earlier to the caracal when the DPC was presented, indicating that the response to a DPC facilitates predator response and that they use information from the cue that reliably reflects the risk in the current momen

    Formaldehyde Exposure and Asthma in Children: A Systematic Review

    Get PDF
    Obj e c t i v e: Despite multiple published studies regarding the association between formaldehyde exposure and childhood asthma, a consistent association has not been identified. Here we report the results of a systematic review of published literature in order to provide a more comprehensive picture of this relationship. Data s o u r c e s: After a comprehensive literature search, we identified seven peer-reviewed studies providing quantitative results regarding the association between formaldehyde exposure and asthma in children. Studies were heterogeneous with respect to the definition of asthma (e.g., self-report, physician diagnosis). Most of the studies were cross-sectional

    Microseismicity of the Mid-Atlantic Ridge at 7°S-8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N-14°50′N

    Get PDF
    Lithospheric formation at slow spreading rates is heterogeneous with multiple modalities, favoring symmetric spreading where magmatism dominates or core complex and inside corner high formation where tectonics dominate. We report microseismicity from three deployments of seismic networks at the Mid-Atlantic Ridge (MAR). Two networks surveyed the MAR near 7 degrees S in the vicinity of the Ascension transform fault. Three inside corner high settings were investigated. However, they remained seismically largely inactive and major seismic activity occurred along the center of the median valley. In contrast, at the Logatchev Massif core complex at 14 degrees 45N seismicity was sparse within the center of the median valley but concentrated along the eastern rift mountains just west of the serpentine hosted Logatchev hydrothermal vent field. To the north and south of the massif, however, seismic activity occurred along the ridge axis, emphasizing the asymmetry of seismicity at the Logatchev segment. Focal mechanisms indicated a large number of reverse faulting events occurring in the vicinity of the vent field at 3-5 km depth, which we interpret to reflect volume expansion accompanying serpentinization. At shallower depth of 2-4 km, some earthquakes in the vicinity of the vent field showed normal faulting behavior, suggesting that normal faults facilitates hydrothermal circulation feeding the vent field. Further, a second set of cross-cutting faults occurred, indicating that the surface location of the field is controlled by local fault systems

    High-resolution LGM climate of Europe and the Alpine region using the regional climate model WRF

    Get PDF
    In this study we present a series of sensitivity experiments conducted for the Last Glacial Maximum (LGM, ∼21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF). Using a four-step two-way nesting approach, we are able to reach a convection-permitting horizontal resolution over the inner part of the study area, covering central Europe and the Alpine region. The main objective of the paper is to evaluate a model version including a series of new developments better suitable for the simulation of paleo-glacial time slices with respect to the ones employed in former studies. The evaluation of the model is conducted against newly available pollen-based reconstructions of the LGM European climate and takes into account the effect of two main sources of model uncertainty: a different height of continental glaciers at higher latitudes of the Northern Hemisphere and different land cover. Model results are in good agreement with evidence from the proxies, in particular for temperatures. Importantly, the consideration of different ensemble members for characterizing model uncertainty allows for increasing the agreement of the model against the proxy reconstructions that would be obtained when considering a single model realization. The spread of the produced ensemble is relatively small for temperature, besides areas surrounding glaciers in summer. On the other hand, differences between the different ensemble members are very pronounced for precipitation, in particular in winter over areas highly affected by moisture advection from the Atlantic. This highlights the importance of the considered sources of uncertainty for the study of European LGM climate and allows for determining where the results of a regional climate model (RCM) are more likely to be uncertain for the considered case study. Finally, the results are also used to assess the effect of convection-permitting resolutions, at both local and regional scales, under glacial conditions.</p

    The carbon footprint of beef transportation in Colombia: Market connections and distribution networks

    Get PDF
    Livestock food systems largely contribute to the overall food systems’ greenhouse gas (GHG) emissions and are thus put at the centre of global policy and research agendas on mitigation and adaptation. An additional growing concern on the prevalence of globalised animal product value chains and the specialisation of agricultural markets and their environmental pressures over supply networks further adds to this debate. However, detailed quantification of the livestock contribution intensity to the emissions has focused mostly on the farm and the performance of animals’ feed intake, rather than on the composition and extension of the beef supply network, a perspective that contributes to further our understanding of the food system’s carbon footprint. This research thus used the calculation of food miles to explore the functioning of the Colombian beef market and the emissions entailed in the mobilisation of live animals and processed products in central trade nodes between 2019-2022. The results were compared with emissions derived from the transportation of alternative proteins from animal (chicken, pork, eggs, and milk) and non-animal sources (dry grains). The analysis of bovine products indicates that beef transport was responsible for the highest environmental load, generating on average 25.000 tons CO2eq, in contrast to alternative proteins, where chicken meat is the biggest culprit (40.000 tons CO2eq). However, chicken’s growing demand has increased the quantities mobilised compared to beef, reflecting a greater efficiency of the chicken supply network per volume mobilised. The relational pattern observed in Colombia’s regions pointed out Cali as the leading city in the reception and redistribution of live animals and beef. A strong interaction with neighbouring municipalities in the southwest and the Colombian Amazon configures Cali as a highly central node that, in consequence, concentrates significant pollution. These findings reveal the need to develop comprehensive approaches and strategies to reduce livestock production emissions, acknowledging the vital role that the beef supply network, transportation distances, infrastructure, and technologies play in cattle-derived emissions

    Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.We estimated the CH4 budget in Finland for 2004–2014 using the CTE-CH4 data assimilation system with an extended atmospheric CH4 observation network of seven sites from Finland to surrounding regions (Hyytiälä, Kjølnes, Kumpula, Pallas, Puijo, Sodankylä, and Utö). The estimated average annual total emission for Finland is 0.6 ± 0.5 Tg CH4 yr−1. Sensitivity experiments show that the posterior biospheric emission estimates for Finland are between 0.3 and 0.9 Tg CH4 yr−1, which lies between the LPX-Bern-DYPTOP (0.2 Tg CH4 yr−1) and LPJG-WHyMe (2.2 Tg CH4 yr−1) process-based model estimates. For anthropogenic emissions, we found that the EDGAR v4.2 FT2010 inventory (0.4 Tg CH4 yr−1) is likely to overestimate emissions in southernmost Finland, but the extent of overestimation and possible relocation of emissions are difficult to derive from the current observation network. The posterior emission estimates were especially reliant on prior information in central Finland. However, based on analysis of posterior atmospheric CH4, we found that the anthropogenic emission distribution based on a national inventory is more reliable than the one based on EDGAR v4.2 FT2010. The contribution of total emissions in Finland to global total emissions is only about 0.13%, and the derived total emissions in Finland showed no trend during 2004–2014. The model using optimized emissions was able to reproduce observed atmospheric CH4 at the sites in Finland and surrounding regions fairly well (correlation > 0.75, bias < ± ppb), supporting adequacy of the observations to be used in atmospheric inversion studies. In addition to global budget estimates, we found that CTE-CH4 is also applicable for regional budget estimates, where small scale (1x1 in this case) optimization is possible with a dense observation network.Natural Environment Research Council (NERC)NordFrosk Nordic Centre of ExcellenceAcademy of FinlandEuropean Research Council (ERC)Swiss National Science Foundation (SNSF)Swedish Research Counci

    Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling

    Get PDF
    Evapotranspiration (ET) is critical in linking global water, carbon and energy cycles. However, direct measurement of global terrestrial ET is not feasible. Here, we first reviewed the basic theory and state-of-the-art approaches for estimating global terrestrial ET, including remote-sensing-based physical models, machine-learning algorithms and land surface models (LSMs). We then utilized 4 remote-sensing-based physical models, 2 machine-learning algorithms and 14 LSMs to analyze the spatial and temporal variations in global terrestrial ET. The results showed that the ensemble means of annual global terrestrial ET estimated by these three categories of approaches agreed well, with values ranging from 589.6 mm yr−1 (6.56×104 km3 yr−1) to 617.1 mm yr−1 (6.87×104 km3 yr−1). For the period from 1982 to 2011, both the ensembles of remote-sensing-based physical models and machine-learning algorithms suggested increasing trends in global terrestrial ET (0.62 mm yr−2 with a significance level of p0.05), although many of the individual LSMs reproduced an increasing trend. Nevertheless, all 20 models used in this study showed that anthropogenic Earth greening had a positive role in increasing terrestrial ET. The concurrent small interannual variability, i.e., relative stability, found in all estimates of global terrestrial ET, suggests that a potential planetary boundary exists in regulating global terrestrial ET, with the value of this boundary being around 600 mm yr−1. Uncertainties among approaches were identified in specific regions, particularly in the Amazon Basin and arid/semiarid regions. Improvements in parameterizing water stress and canopy dynamics, the utilization of new available satellite retrievals and deep-learning methods, and model–data fusion will advance our predictive understanding of global terrestrial ET
    corecore