64 research outputs found

    The Environment of the Binary Neutron Star Merger GW170817

    Get PDF
    We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z = 0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (1\lesssim 1 Gyr) "dry" merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with lesssim1% of any light arising from a population with ages <500Myr\lt 500\,\mathrm{Myr}. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (re3{r}_{e}\sim 3 kpc), providing an r e -normalized offset that is closer than 90%\sim 90 \% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy

    Flexible prey handling, preference and a novel capture technique in invasive, sub-adult Chinese mitten crabs

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    A systematic review of the effects of residency training on patient outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Residents are vital to the clinical workforce of today and tomorrow. Although in training to become specialists, they also provide much of the daily patient care. Residency training aims to prepare residents to provide a high quality of care. It is essential to assess the patient outcome aspects of residency training, to evaluate the effect or impact of global investments made in training programs. Therefore, we conducted a systematic review to evaluate the effects of relevant aspects of residency training on patient outcomes.</p> <p>Methods</p> <p>The literature was searched from December 2004 to February 2011 using MEDLINE, Cochrane, Embase and the Education Resources Information Center databases with terms related to residency training and (post) graduate medical education and patient outcomes, including mortality, morbidity, complications, length of stay and patient satisfaction. Included studies evaluated the impact of residency training on patient outcomes.</p> <p>Results</p> <p>Ninety-seven articles were included from 182 full-text articles of the initial 2,001 hits. All studies were of average or good quality and the majority had an observational study design.Ninety-six studies provided insight into the effect of 'the level of experience of residents' on patient outcomes during residency training. Within these studies, the start of the academic year was not without risk (five out of 19 studies), but individual progression of residents (seven studies) as well as progression through residency training (nine out of 10 studies) had a positive effect on patient outcomes. Compared with faculty, residents' care resulted mostly in similar patient outcomes when dedicated supervision and additional operation time were arranged for (34 out of 43 studies). After new, modified or improved training programs, patient outcomes remained unchanged or improved (16 out of 17 studies). Only one study focused on physicians' prior training site when assessing the quality of patient care. In this study, training programs were ranked by complication rates of their graduates, thus linking patient outcomes back to where physicians were trained.</p> <p>Conclusions</p> <p>The majority of studies included in this systematic review drew attention to the fact that patient care appears safe and of equal quality when delivered by residents. A minority of results pointed to some negative patient outcomes from the involvement of residents. Adequate supervision, room for extra operation time, and evaluation of and attention to the individual competence of residents throughout residency training could positively serve patient outcomes. Limited evidence is available on the effect of residency training on later practice. Both qualitative and quantitative research designs are needed to clarify which aspects of residency training best prepare doctors to deliver high quality care.</p

    Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer

    Get PDF
    Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity

    4D MUSIC CMR: value-based imaging of neonates and infants with congenital heart disease

    Get PDF
    Abstract Background 4D Multiphase Steady State Imaging with Contrast (MUSIC) acquires high-resolution volumetric images of the beating heart during uninterrupted ventilation. We aim to evaluate the diagnostic performance and clinical impact of 4D MUSIC in a cohort of neonates and infants with congenital heart disease (CHD). Methods Forty consecutive neonates and infants with CHD (age range 2 days to 2 years, weight 1 to 13 kg) underwent 3.0 T CMR with ferumoxytol enhancement (FE) at a single institution. Independently, two readers graded the diagnostic image quality of intra-cardiac structures and related vascular segments on FE-MUSIC and breath held FE-CMRA images using a four-point scale. Correlation of the CMR findings with surgery and other imaging modalities was performed in all patients. Clinical impact was evaluated in consensus with referring surgeons and cardiologists. One point was given for each of five key outcome measures: 1) change in overall management, 2) change in surgical approach, 3) reduction in the need for diagnostic catheterization, 4) improved assessment of risk-to-benefit for planned intervention and discussion with parents, 5) accurate pre-procedural roadmap. Results All FE-CMR studies were completed successfully, safely and without adverse events. On a four-point scale, the average FE-MUSIC image quality scores were >3.5 for intra-cardiac structures and >3.0 for coronary arteries. Intra-cardiac morphology and vascular anatomy were well visualized with good interobserver agreement (r = 0.46). Correspondence between the findings on MUSIC, surgery, correlative imaging and autopsy was excellent. The average clinical impact score was 4.2 ± 0.9. In five patients with discordant findings on echo/MUSIC (n = 5) and catheter angiography/MUSIC (n = 1), findings on FE-MUSIC were shown to be accurate at autopsy (n = 1) and surgery (n = 4). The decision to undertake biventricular vs univentricular repair was amended in 2 patients based on FE-MUSIC findings. Plans for surgical approaches which would have involved circulatory arrest were amended in two of 28 surgical cases. In all 28 cases requiring procedural intervention, FE-MUSIC provided accurate dynamic 3D roadmaps and more confident risk-to-benefit assessments for proposed interventions. Conclusions FE-MUSIC CMR has high clinical impact by providing accurate, high quality, simple and safe dynamic 3D imaging of cardiac and vascular anatomy in neonates and infants with CHD. The findings influenced patient management in a positive manner

    Multi-wavelength characterization of the blazar S5 0716+714 during an unprecedented outburst phase

    Get PDF
    Context. The BL Lac object S5 0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band.Aims.The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission.Methods. Multi-wavelength light curves have been studied together with the broadband spectral energy distributions (SEDs). The sample includes data from Effelsberg, OVRO, Metsahovi, VLBI, CARMA, IRAM, SMA, Swift-UVOT, KVA, Tuorla, Steward, RINGO3, KANATA, AZT-8+ST7, Perkins, LX-200, Swift-XRT, NuSTAR, Fermi-LAT and MAGIC.Results. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the very-high-energy (VHE, E> 100 GeV). In the constructed SED, the Swift-XRT +NuSTAR data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1 GeV to 600 GeV by Fermi+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to y-ray data. Instead we use a two-zone model. The electric vector position angle (EVPA) shows an unprecedented fast rotation. An estimation of the redshift of the source by combined high-energy (HE, 0.1 GeV < E < 100 GeV) and VHE data provides a value of ,z = 0.31 +/- 0.02(stats) +/- 0.05(sys), confirming the literature value.Conclusions. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out of a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modeling

    Multi-wavelength characterization of the blazar S5~0716+714 during an unprecedented outburst phase

    Get PDF
    The BL Lac object S5~0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band. The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission. Multi-wavelength light curves have been studied together with the broadband Spectral Energy Distributions (SEDs). The data set collected spans from radio, optical photometry and polarimetry, X-ray, high-energy (HE, 0.1 GeV 100 GeV) with MAGIC. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the VHE. In the constructed SED the \textit{Swift}-XRT+\textit{NuSTAR} data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1~GeV to 600~GeV by \textit{Fermi}+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to γ\gamma-ray data. Instead we use a two-zone model. The EVPA shows an unprecedented fast rotation. An estimation of the redshift of the source by combined HE and VHE data provides a value of z=0.31±0.02stats±0.05sysz = 0.31 \pm 0.02_{stats} \pm 0.05_{sys}, confirming the literature value. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modelling

    Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017

    Get PDF
    Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsahovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.Results. The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3 sigma. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from gamma(min)' = 2 x 10(4) to gamma(max)' = 6 x 10(5).</p

    Spontaneous ureteral rupture

    No full text
    corecore