45 research outputs found

    Interannual variations of water mass properties and volumes in the Southern Ocean

    Get PDF
    International audienceTime-resolving optimum multi-parameter (TROMP) analysis is used to study interannual variability of water mass properties in the Southern Ocean in a section between Antarctica and Tasmania for the period 1991?1996. Water mass properties were stable during 1994?1996 but showed departures from their 1994-1996 values during 1991 and 1993. TROMP analysis is unable to quantify the interannual variation in detail, but it is shown that interannual variability does not invalidate the findings of a previous study that was based on the assumption of time-invariable water mass properties and suggested large interannual fluctuations in the water mass volumes south of Tasmania

    Effect of screening on shot noise in diffusive mesoscopic conductors

    Full text link
    Shot noise in diffusive mesoscopic conductors, at finite observation frequencies ω\omega (comparable to the reciprocal Thouless time τT−1\tau_T^{-1}), is analyzed with an account of screening. At low frequencies, the well-known result SI(ω)=2eI/3S_I(\omega)=2eI/3 is recovered. This result is valid at arbitrary ωτT\omega \tau_T for wide conductors longer than the screening length. However, at least for two very different systems, namely, wide and short conductors, and thin conductors over a close ground plane, noise approaches a different fundamental level, SI(ω)=eIS_I(\omega) = eI, at ωτT≫1\omega \tau _T\gg 1.Comment: 5 pages, 3 figures. Published version. Also available in the journal's format at http://hana.physics.sunysb.edu/~yehuda/cv/papers/shotnoise.pd

    Towards single-electron metrology

    Full text link
    We review the status of the understanding of single-electron transport (SET) devices with respect to their applicability in metrology. Their envisioned role as the basis of a high-precision electrical standard is outlined and is discussed in the context of other standards. The operation principles of single electron transistors, turnstiles and pumps are explained and the fundamental limits of these devices are discussed in detail. We describe the various physical mechanisms that influence the device uncertainty and review the analytical and numerical methods needed to calculate the intrinsic uncertainty and to optimise the fabrication and operation parameters. Recent experimental results are evaluated and compared with theoretical predictions. Although there are discrepancies between theory and experiments, the intrinsic uncertainty is already small enough to start preparing for the first SET-based metrological applications.Comment: 39 pages, 14 figures. Review paper to be published in International Journal of Modern Physics

    Nonuniversal Shot Noise in Disordered Quantum Wires with Channel-Number Imbalance

    Full text link
    The number of conducting channels for one propagating direction is equal to that for the other direction in ordinary quantum wires. However, they can be imbalanced in graphene nanoribbons with zigzag edges. Employing the model system in which a degree of channel-number imbalance can be controlled, we calculate the shot-noise power at zero frequency by using the Boltzmann-Langevin approach. The shot-noise power in an ordinary diffusive conductor is one-third of the Poisson value. We show that with increasing the degree of channel-number imbalance, the universal one-third suppression breaks down and a highly nonuniversal behavior of shot noise appears.Comment: 10 pages, 3 figure

    Current fluctuations in a single tunnel junction

    Full text link
    We study noise spectra of currents through a tunnel junction in weak tunneling limit. We introduce effective capacitance to take into account the interaction effect and explicitly incorporate the electromagnetic environment of the junction into the formulation. We study the effect of charging energy and macroscopic environment on noise spectra. We calculate current fluctuations at tunneling barrier and fluctuations measured at leads. It is shown that two fluctuations have different noise spectra and the relation between them is nontrivial. We provide an explanation for the origin of the difference. Experimental implications are discussed.Comment: 25 pages, Revtex 3.

    Universality of the 1/3 shot-noise suppression factor in nondegenerate diffusive conductors

    Get PDF
    Shot-noise suppression is investigated in nondegenerate diffusive conductors by means of an ensemble Monte Carlo simulator. The universal 1/3 suppression value is obtained when transport occurs under elastic collision regime provided the following conditions are satisfied: (i) The applied voltage is much larger than the thermal value; (ii) the length of the device is much longer than both the elastic mean free path and the Debye length. By fully suppressing carrier-number fluctuations, long range Coulomb interaction is essential to obtain the 1/3 value in the low-frequency limit.Comment: RevTex, 4 pages, 4 figure

    Universality of Shot-Noise in Multiterminal Diffusive Conductors

    Full text link
    We prove the universality of shot-noise in multiterminal diffusive conductors of arbitrary shape and dimension for purely elastic scattering as well as for hot electrons. Using a Boltzmann-Langevin approach we reduce the calculation of shot-noise correlators to the solution of a diffusion equation. We show that shot-noise in multiterminal conductors is a non-local quantity and that exchange effects can occur without quantum phase coherence even at zero electron temperature. Concrete numbers for shot-noise are given that can be tested experimentally.Comment: 4 double-column pages, REVTeX, 1 eps figure embedded with eps

    The 1/3-shot noise suppression in diffusive nanowires

    Full text link
    We report low-temperature shot noise measurements of short diffusive Au wires attached to electron reservoirs of varying sizes. The measured noise suppression factor compared to the classical noise value 2e∣I∣2e\left| I\right| strongly depends on the electric heat conductance of the reservoirs. For small reservoirs injection of hot electrons increases the measured noise and hence the suppression factor. The universal 1/3-suppression factor can only asymptotically be reached for macroscopically large and thick electron reservoirs. A heating model based on the Wiedemann-Franz law is used to explain this effect.Comment: 10 figure

    Current noise in long diffusive SNS junctions in the incoherent MAR regime

    Full text link
    Spectral density of current fluctuations at zero frequency is calculated for a long diffusive SNS junction with low-resistive interfaces. At low temperature, T << Delta, the subgap shot noise approaches linear voltage dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the normal conductor and voltage independent excess noise. This result can also be interpreted as the 1/3-suppressed Poisson noise for the effective charge q = e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At higher temperatures, anomalies of the current noise develop at the gap subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.

    Semiclassical theory of shot-noise suppression

    Get PDF
    The Boltzmann-Langevin equation is used to relate the shot-noise power of a mesoscopic conductor to classical transmission probabilities at the Fermi level. This semiclassical theory is applied to tunneling through n barriers in series. For n -> infinity the shot noise approaches one third of the Poisson noise, independent of the transparency of the barriers. This confirms that the one-third suppression known to occur in diffusive conductors does not require phase coherence.Comment: pages, RevTeX, 1 figur
    corecore