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Semiclassical theory of shot-noise suppression
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The Boltzmann-Langevin equation is used to relate the shot-noise power of a mesoscopic con-
ductor to classical transmission probabilities at the Fermi level. This semiclassical theory is applied
to tunneling through n barriers in series. For n —> oo the shot noise approaches one-third of the
Poisson noise, independent of the transparency of the barriers. This confirms that the one-third
suppression known to occur in. diffusive conductors does not require phase coherence.

The discreteness of the electron charge causes time-
dependent fluctuations in the electrical current, known
äs shot noise. These fluctuations are characterized by a
white noise spectrum and persist down to zero temper-
ature. The shot-noise power P contains Information on
the conduction process, which is not given by the resis-
tance. A weil-known example is a vacuum diode, where
P = 2e|Jj = Ppoiason) with J the average current. This
teils us that the electrons traverse the conductor in a
completely uncorrelated fashion, äs in a Poisson. process.
In macroscopic samples, the shot noise is averaged out to
zero by inelastic scattering.

In the past few years, the shot noise has been inves-
tigated in mesoscopic conductors, smaller than the in-
elastic scattering length. Theoretical analysis shows that
the shot noise can be suppressed below Ppoissom due to
correlations in the electron transmission imposed by the
Pauli principle.1"5 Most intriguingly, it has been found
that P = |PpoiBscra in a metallic, diffusive conductor.6"10

The factor one-third is universal in the sense that it is
independent of the material, sample size, or degree of dis-
order, äs long äs the length L of the conductor is greater
than the mean free path ί and shorter than the localiza-
tion length. An observation of suppressed shot noise in a
diffusive conductor has been reported.11 In a quantum-
mechanical description,6 the suppression follows from the
bimodal distribution of transmission eigenvalues.12 Sur-
prisingly, Nagaev7 finds the same one-third suppression
from a semiclassical approach, in which the Pauli princi-
ple is accounted for, but the motion of electrons is treated
classically. This implies that phase coherence is not es-
sential for the suppression, but the relationship between
the quantum-mechanical and semiclassical theories re-
mains unclear.

In this paper, we reinvestigate the semiclassical ap-
proach and present a detailed comparison with quantum-
mechanical calculations in the literature. We use the
Boltzmann-Langevin equation,13'14 which is a semiclassi-
cal kinetic equation for nonequilibrium fluctuations. This
equation has previously been applied to shot noise by
Kulik and Omel'yanchuk15 for a ballistic point contact,
and by Nagaev7 for a diffusive conductor. Below. we will

demonstrate how the Boltzmann-Langevin equation can
be applied to an arbitrary mesoscopic conductor. Our
analysis corrects a previous paper.16 To be specific, we
consider tunneling through n. planar barriers in series
(tunnel probability Γ). This model is sufBciently sim-
ple that it allpws us to obtain a closed expression for P
and sufnciently general so that we can compare it with
all results in the literature from the quantum-mechanical
approach. For n = 2 and Γ <C l, we recover the results for
a double-barrier junction of Refs. 17 and 18. In the limit
n — )· oo, the shot-noise power approaches |Pp0isson inde-
pendent of Γ. By taking the continuum Hmit, n — >· oo,
Γ — > l, at fixed n(l — Γ), we can study the shot noise in
a diffusive conductor and the crossover to ballistic trans-
port. We find exact agreement with a previous quantum-
mechanical evaluation,8 in the limit of a conductance
3> e2/h. It has been emphasized by Landauer,19 that
Coulomb interactions may induce a further reduction of
P. Here, we follow the quantum-mechanical treatments
in assuming noninteracting electrons, leaving interaction
effects for future work.

Let us begin by briefly reviewing the quantum-
mechanical approach. The zero-temperature, zero-
frequency shot-noise power P of a phase-coherent con-
ductor is related to the transmission matrix i by the
formula2'4

P = P0Tr * tt(l - tit)_= W

where PQ Ξ 2e|V|Go, with V the applied voltage and
Go = e2/7i the" conductance quantum (we assume spin-
less electrons for simplicity of notation), Tn € [0,1] an
eigenvalue of ίί^, and N the number of transverse modes
at the Fermi energy Ep . The conductance is given by
the Landauer formula

(2)

One finds P = 2e\V\G = Pp0isson f°r a conductor, where
all Tn <C l (such äs a high tunnel barrier). However, if
some Tn are near l"(open channels), then the shot noise
is reduced below Pp0iseon· In a phase-coherent metallic,
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diffusive conductor the Tn are either exponentially small
or of order unity.12 This bimodal distribution gives rise
to the one-third suppression of the shot noise.6

We now formtdate the semiclassical kinetic theory.13'14

We consider a cü-dimensional conductor connected by
ideal leads to two electron reservoirs. The fluctuating dis-
tribution fimction /(r, k, i) equals (2ir]d times the den-
sity of electrons with position r, and wave vector k, at
time t. [The factor (2ir)d is introduced so that / is the
occupation number of a unit cell in phase spacej The
average over time-dependent fluctuations (/) = / obeys
the Boltzmann equation,

_=_.
dt ~ dt

_
dr ndk'

(Sa)

(3b)

The derivative (3b) (with v — Äk/ra) describes the clas-
sical motion in the force field 3~(r)· The term Sf ac-
counts for the stochastic effects of scattering. Only elas-
tic scattering is taken into account and electron-electron
scatterhig is disregarded. We consider the stationary Sit-
uation, where / is independent of i. The time-dependent
fluctuations £/ = / — / satisfy the Boltzmann-Langevin
equation,13'14

(d/dt + S) 6f (r, k, i) = j (r, k, ί), (4)

where j is a fluctuating source term. In the Boltzmann
equation (3), scattering occurs into all wave vectors k
with some probability distribution. Equation (4) takes
into account that each electron is scattered into only one
particular k. This implies that the flux j is positive for
that k and negative for the others. The flux j has zero
average, (j) — 0, and covariance

(27r)dJ(r - t')J(r, k, k') . (5)

The δ functions ensure that fluxes are only correlated if
they are induced by the same scattering process. The
correlator J depends on the type of scattering and on /,
but not on &f. The J for impurity scattering is given in
Ref. 14, and for barrier scattering it is given below.

We evaluate the fluctuating current 5I(t) = I(t) — I
through cross section Sr in the right lead,

δι(ΐ] = Js

 dy ' k' (6)

Here, r = (x, y), with the χ coordinate along and y per-
pendicular to the lead. The zero-frequency noise power
is given by

P =
,0

= 2
J — o

(7)

β dt ' l de' fdk'

where the Green's function Q is a solution of

(8)

, (9)

such that Q — 0 if i < 0. The transmission probability
, T(r, k) is the probability that an electron at (r, k) leaves

the wire through the right lead. It is related to Q by

T(r, k) = Γ dt ( dy' fdk' v'x g(r', k'; r, k; t) . (10)
Jo Jsr J

Equations (5)-(10) yield for the noise power the expres-
sion

- Equation (11) applies generally to any conductor in
which only elastic scattering occurs. We now specialize
to the case that the scattering is due to n planar tunnel
barriers, perpendicular to the χ direction (see the inset
of Fig. 1). Barrier i has tunnel probability Γ i € [0,1],
which for simplicity is assumed to be k and y indepen-
dent. Upon transmission k is conserved, whereas upon
reflection k — > k = (— fe^ky). In what follows, we drop
the (irrelevant) transverse coordinate y. At barrier i (at
χ = a:;), the average densities / on the left side (xi-) and
on the right side (xi+) are related by

f(xi+, k) = Tif(xi-, k) + (l - Tt ) , k) , (12)

for kx > 0. The relation for kx < 0 is Eq. (12), with
a;i_ and Xi+ interchanged. To determine the correlator

a

if

(

l.ü

.D

0.4

0.2

00

l/l
3.0 1.0 2.0

-/^~~~

r,
'4..I

""" O
o
1 1 1 1 1 1

3.0 4.C

(b)

Γ2 Γ

l

-;--s— β— β·~

(a)
t ι ι t

)
0.4 g

.a

0.2 f£

0.0 Λ

The formal solution of Eq. (4) is

1 2 3 4 5 6 7 8 9 1 0
n

FIG. 1. (a) The shot-noise power P for n tunnel barriers
in series with transmission probability Γ = 0.1 (dots) and
Γ = 0.9 (circles), computed from Eq. (19). The dashed line
is the large-n limit P — |jFtoisson· The inset shows schemat-
ically the geometry coirsidered. (b) The shot-noise power P
of a disordered wire, äs a function of the ratio of length L to
mean free path l, according to Eq. (20).
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J in. Eq. (5), we argue in a similar way äs in Ref. 5.
Consider an incoming state from the left (zj_,k) and
from the right (xj+,k) (we assume kx > 0). If both
incoming states are either filled or empty, there will be no
fluctuations in the outgoing states, hence j = 0. Let us,
therefore, consider the case that the incoming state from
the left is filled and that from the right is empty, which
occurs with probability f(xi^,li)[L — /(a^k)]. Οη the
average, the outgoing states at the left and right haye
occupation l— 1\ and Fj, respectively. However, since~the
incoming electron is either transmitted or reflected, the
instantaneous occupation of the outgoing states differs
from the average occupation. Upon transmission, the
state at the right (left) has an excess (deficit) occupation
of l — Fi. Transmission occurs with probability ΓΪ, so the
contribution to J(o:,k,k') from a transmitted electron is

ri(i-ri)
2[ä(k-k')-5(k-k')]5(o;-a;;)|ua!|. Similarly, a

refiected electron contributes (l-F^Ffl^k-k') -<J(k-
k')]i(o; — aji)|«a:|. Collecting results, we find for kx > 0,

J(x, k, k') = Σ2=1δ(χ - βί) Γ

x|we |[i(fc-k')

_

i(k-k')]

(13)

For kx < 0, Eq. (13) holds upon interchanging xj- and
Xi+.

The average distribution function / inside the conduc-
tor depends on the equilibriura distributions f i and fr in
the left and right reservoirs, according to

f(x, k) = T(x, -k)/P(e) + [l - T(x, -k)]/z(e) , (14)

where ε is the electron energy and T (a;, — k) equals the
probability that an electron at (a:, k) has arrived there
from the right reservoir. At zero temperature, one has
fi(e) = &(EF + eV- ε), fr (ε) = Q(EF - ε), with Θ the
unit step function. Substitution of Eqs. (13) and (14)
into Eq. (11) and linearization in V yields

where Zy* = T(xi+,ka > 0) [Tf~ = Γ(β!,_,Αβ < 0)] is
the transmission probability into the right reservoir of an
electron moving away from the right (left) side of barrier
i. The conductance is given simply by

/ ί̂ ΛΓ rri ftfi\
= Gro-iV 2g , (loj

where TQ = T(xi-,kx > 0) is the transmission proba-
bility through the whole conductor. Comparing Eqs. (2)
and (16), we note that ^,Tn corresponds semiclassically
to JVTo- Comparison of Eqs. (1) and (15) shows that the
semiclassical correspondence to ^nTn(\ — T„) is much
more complicated, äs it involves the transmission prob-
abilities Tj~*,Tf~ at all scatterers inside the conductor
(and not just the transmission probability TQ through
the whole conductor).

As a first application of Eq. (15), we calculate the
shot noise for a single tunnel barrier. Using TO = Γ,
T<- = 0, Tf1· = l, we find the expected result1"5

P = Ρ0ΝΓ(ί - Γ) = (l - Γ)ΡΡοί55θη. The double-
barrier case (n = 2) is less trivial. Experiments by Li
etßl.,20 showed füll Poisson noise for asymmetric struc-
tures (Γι -C Γ2) and a suppression by one-half for the
Symmetrie case (Γχ ~ Γ2). This efFect has been ex-
plained by Chen and Ting,17 by Davies et al.,1B and by
others.21 These theories assume resonant tunneling in the
regime that the applied voltage V is much greater than
the width of the resonance. This requires Γι,Γ2 -C 1.
The present semiclassical approach makes no reference
.to transmission resonances and is valid for all ΓΙ, ΓΖ.
For the double-barrier System one has T0 = ΓιΓ2/Δ,
Tf- = Ο, ΤΓ = Γ3/Δ, Tf = (1-ΓΟΓ3/Δ, and T? = l,
with Δ = Γ! + Γ2 — Γϊ.Γ2. From Eqs. (15) and (16), it
follows that

(Γ1+Γ2-Γ1Γ2)2 •Ppo (17)

In the limit ΓΙ, Γ2 <C l Eq. (17) coincides precisely with
the results of Refs. 17 and 18.

The shot-noise suppression of one-half for a symmet-
ric double-barrier junction has the same origin äs the
one-third suppression for a diffusive conductor. In our
semiclassical model, this is evident from the fact that a
diffusive conductor is the continuum limit of a series of
tunnel barriers. We demonstrate this below. Quantum
mechanically, the common origin is the bimodal distribu-
tion ρ(Τ) = (Ση δ(Τ ~ Τη)) of transmission eigenvalues,
which for a double-barrier junction is given by22

(18)
Τ - (Δ Τ + ΓιΓ2)

2

for T e [T_,T+], with T± = Γ!Γ2/(1 Τ νΤ^Δ)2. For
a Symmetrie junction (Γι = Γ2 -C 1), the density (18)
is strongly peaked near T = 0 and T — l, leading to a
suppression of shot noise, just äs in the case of a diffusive
conductor. In fact, one can verify that the average of Eqs.
(1) and (2), with the bimodal distribution (18), gives
precisely the result (17) from the Boltzmann-Langevin
equation.

We now consider n barriers with equal Γ. We find TO =
Γ/Δ.2Τ = [Γ + ί(1-Γ)]/Δ, andlT = (<-1)(1-Γ)/Δ,
with Δ = Γ H- n(l — Γ). Substitution into Eqs. (15) and
(16) yields

-K-η(1-Γ)2(2+Γ)-Γ3

(19)

The shot-noise suppression for a low barrier (Γ = 0.9)
and for a high barrier (Γ = 0.1) is plotted against n in
Fig. l(a). For Γ = 0.1, we observe almost füll shot noise
if n = l, one-half suppression if n = 2, and on increasing
n the suppression rapidly reaches one-third. For Γ = 0.9,
we observe that -P/Ppoisson increases from ahnost zero to
one-third. It is clear from Eq. (19) that P —> |Pp0isson
for n —> oo independent of Γ.
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Finally, we make the connection with elastic impu-
rity scattering in a disordered wire. Here, 'the scatter-
ing occiirs throughout the whole wire instead of at a
discrete number of barriers. We have previously car-
ried out a quantum-mechanical study of the shot noise
in such a wire,8 on the basis of the Dorokhov-Mello-
Pereyra-Kumar equation.23 For the semiclassical evalu-
ation we take the limit n —> oo and Γ —>· l, such that
n(l - Γ) = L/L From Eq. (16), one then obtains the
conductance G = G0N(l + L/t)*1. For the shot-noise
power we find from Eq. (19),

(20)

This is precisely the result of Ref. 8 for a metallic wire
(Ni/L » l). Equation (20) is plotted in Fig. l(b)
and describes how the shot noise crosses over from com-

plete suppression in the ballistic regime to one-third of
the Poisson noise in the diffusive regime. The diffusive
limit confirms Nagaev's calculation.7 Quantum correc-
tions (of order PO) to *ne shot-noise power, due to weak
localization,8 cannot be obtained within our semiclassical
approach.

In summary, we have presented a general framework to
derive the shot noise from the semiclassical Boltzmann-
Langevin equation, and applied this to the case of con-
duction through a sequence of tunnel barriers. We obtain
a sub-Poissonian shot-noise power, in complete agree-
ment with quantum-mechanical calculations in the lit-
erature. This establishes that phase coherence is not
required for the occurrence of suppressed shot noise in
mesoscopic conductors.
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