273 research outputs found

    Schwarzschild black hole lensing

    Get PDF
    We study strong gravitational lensing due to a Schwarzschild black hole. Apart from the primary and the secondary images we find a sequence of images on both sides of the optic axis; we call them {\em relativistic images}. These images are formed due to large bending of light near r = 3M (the closest distance of approach r_o is greater than 3M). The sources of the entire universe are mapped in the vicinity of the black hole by these images. For the case of the Galactic supermassive ``black hole'' they are formed at about 17 microarcseconds from the optic axis. The relativistic images are not resolved among themselves, but they are resolved from the primary and secondary images. However the relativistic images are very much demagnified unless the observer, lens and source are very highly aligned. Due to this and some other difficulties the observation of these images does not seem to be feasible in near future. However, it would be a great success of the general theory of relativity in a strong gravitational field if they ever were observed and it would also give an upper bound, r_o = 3.21 M, to the compactness of the lens, which would support the black hole interpretation of the lensing object.Comment: RevTex, 5 eps files are included, observational difficulties are discussed and there are some changes in presentatio

    Rapidly Rotating Lenses: Repeating features in the lightcurves of short period binary microlenses

    Get PDF
    Microlensing is most sensitive to binary lenses with relatively large orbital separations, and as such, typical binary microlensing events show little or no orbital motion during the event. However, despite the strength of binary microlensing features falling off rapidly as the lens separation decreases, we show that it is possible to detect repeating features in the lightcurve of binary microlenses that complete several orbits during the microlensing event. We investigate the lightcurve features of such Rapidly Rotating Lens (RRL) events. We derive analytical limits on the range of parameters where these effects are detectable, and confirm these numerically. Using a population synthesis Galactic model we estimate the RRL event rate for a ground-based and space-based microlensing survey to be 0.32fb and 7.8fb events per year respectively, assuming year-round monitoring and where fb is the binary fraction. We detail how RRL event parameters can be quickly estimated from their lightcurves, and suggest a method to model RRL events using timing measurements of lightcurve features. Modelling RRL lightcurves will yield the lens orbital period and possibly measurements of all orbital elements including the inclination and eccentricity. Measurement of the period from the lightcurve allows a mass-distance relation to be defined, which when combined with a measurement of microlens parallax or finite source effects, can yield a mass measurement to a two-fold degeneracy. With sub-percent accuracy photometry it is possible to detect planetary companions, but the likelihood of this is very small.Comment: 16 pages, 14 figures, accepted for publication in MNRAS. Equation 21 simplifie

    A frozen super-Earth orbiting a star at the bottom of the Main Sequence

    Full text link
    We observed the microlensing event MOA-2007-BLG-192 at high angular resolution in JHKs with the NACO adaptive optics system on the VLT while the object was still amplified by a factor 1.23 and then at baseline 18 months later. We analyzed and calibrated the NACO photometry in the standard 2MASS system in order to accurately constrain the source and the lens star fluxes. We detect light from the host star of MOA-2007-BLG-192Lb, which significantly reduces the uncertainties in its char- acteristics as compared to earlier analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late type M-dwarf (0.084 [+0.015] [-0.012] M\odot) at a distance of 660 [+100] [-70] pc orbited by a 3.2 [+5.2] [-1.8] M\oplus super-Earth at 0.66 [+0.51] [-0.22] AU. We then discuss the properties of this cold planetary system.Comment: published version A&A 540, A78 (2012) A&A, 10 pages, 7 Figure

    Strong Gravitational Lensing in a Charged Squashed Kaluza- Klein Black hole

    Full text link
    In this paper we investigate the strong gravitational lensing in a charged squashed Kaluza-Klein black hole. We suppose that the supermassive black hole in the galaxy center can be considered by a charged squashed Kaluza-Klein black hole and then we study the strong gravitational lensing theory and estimate the numerical values for parameters and observables of it. We explore the effects of the scale of extra dimension ρ0\rho_0 and the charge of black hole ρq\rho_q on these parameters and observables.Comment: 17 pages, 10 figure

    Coming out with the media: the ritualization of self-disclosure in the Dutch television program Uit de Kast

    Get PDF
    Using the media to disclose one’s sexual identity has become an increasingly salient practice in recent years. Yet little is known about the reasons for the emergence of this form of self-disclosure. Based on an analysis of the Dutch television programme Uit de Kast (‘Out of the Closet’), this article relates the rise of mediated coming out practices to the ritualizing power of the media: we argue that media plays a quintessential role in transforming the socially unscripted act of coming out into a patterned, culturally meaningful performance. Our analysis reveals that the ritual work of the programme is embedded in the ways 1) the generic format of the show structures the self-disclosures, 2) the authority of the media is deployed to channel the coming out process, and 3) the programme, while controlling diversity, reinforces dominant societal values and ideologies. The case not only highlights how unprecedented ritual forms come to flourish in the current era of ‘participatory’ media culture, but also demonstrates how ritualization supports and naturalizes the claim that media is an effective agent to create order in everyday, ordinary lives

    Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression.</p> <p>Methods</p> <p>The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients.</p> <p>Results</p> <p>Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients.</p> <p>Conclusion</p> <p>Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients.</p

    Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies

    Full text link
    Microlensing is now a very popular observational astronomical technique. The investigations accessible through this effect range from the dark matter problem to the search for extra-solar planets. In this review, the techniques to search for microlensing effects and to determine optical depths through the monitoring of large samples of stars will be described. The consequences of the published results on the knowledge of the Milky-Way structure and its dark matter component will be discussed. The difficulties and limitations of the ongoing programs and the perspectives of the microlensing optical depth technique as a probe of the Galaxy structure will also be detailed.Comment: Accepted for publication in General Relativity and Gravitation. General Relativity and Gravitation in press (2010) 0

    Detection of Extrasolar Planets by Gravitational Microlensing

    Full text link
    Gravitational microlensing provides a unique window on the properties and prevalence of extrasolar planetary systems because of its ability to find low-mass planets at separations of a few AU. The early evidence from microlensing indicates that the most common type of exoplanet yet detected are the so-called "super-Earth" planets of ~10 Earth-masses at a separation of a few AU from their host stars. The detection of two such planets indicates that roughly one third of stars have such planets in the separation range 1.5-4 AU, which is about an order of magnitude larger than the prevalence of gas-giant planets at these separations. We review the basic physics of the microlensing method, and show why this method allows the detection of Earth-mass planets at separations of 2-3 AU with ground-based observations. We explore the conditions that allow the detection of the planetary host stars and allow measurement of planetary orbital parameters. Finally, we show that a low-cost, space-based microlensing survey can provide a comprehensive statistical census of extrasolar planetary systems with sensitivity down to 0.1 Earth-masses at separations ranging from 0.5 AU to infinity.Comment: 43 pages. Very similar to chapter 3 of Exoplanets: Detection, Formation, Properties, Habitability, John Mason, ed. Springer (April 3, 2008
    corecore