21 research outputs found
Overview of ImageCLEF 2018: Challenges, Datasets and Evaluation
This paper presents an overview of the ImageCLEF 2018 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) Labs 2018. ImageCLEF is an ongoing initiative (it started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval with the aim of providing information access to collections of images in various usage scenarios and domains. In 2018, the 16th edition of ImageCLEF ran three main tasks and a pilot task: (1) a caption prediction task that aims at predicting the caption of a figure from the biomedical literature based only on the figure image; (2) a tuberculosis task that aims at detecting the tuberculosis type, severity and drug resistance from CT (Computed Tomography) volumes of the lung; (3) a LifeLog task (videos, images and other sources) about daily activities understanding and moment retrieval, and (4) a pilot task on visual question answering where systems are tasked with answering medical questions. The strong participation, with over 100 research groups registering and 31 submitting results for the tasks, shows an increasing interest in this benchmarking campaign
ImageCLEF 2019: Multimedia Retrieval in Lifelogging, Medical, Nature, and Security Applications
This paper presents an overview of the foreseen ImageCLEF 2019 lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2019, the 17th edition of ImageCLEF will run four main tasks: (i) a Lifelog task (videos, images and other sources) about daily activities understanding, retrieval and summarization, (ii) a Medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with newer data, (iii) a new Coral task about segmenting and labeling collections of coral images for 3D modeling, and (iv) a new Security
task addressing the problems of automatically identifying forged content and retrieve hidden information. The strong participation, with over 100 research groups registering and 31 submitting results for the tasks in 2018 shows an important interest in this benchmarking campaign and we expect the new tasks to attract at least as many researchers for 2019
ImageCLEF 2020: Multimedia Retrieval in Lifelogging, Medical, Nature, and Security Applications
This paper presents an overview of the 2020 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2020 in Thessaloniki, Greece. ImageCLEF is an ongoing evaluation initiative (run since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2020, the 18th edition of ImageCLEF will organize four main tasks: (i) a Lifelog task (videos, images and other sources) about daily activity understanding, retrieval and summarization, (ii) a Medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with new data and adapted tasks, (iii) a Coral task about segmenting and labeling collections of coral images for 3D modeling, and a new (iv) Web user interface task addressing the problems of detecting and recognizing hand drawn website UIs (User Interfaces) for generating automatic code. The strong participation, with over 235 research groups registering and 63 submitting over 359 runs for the tasks in 2019 shows an important interest in this benchmarking campaign. We expect the new tasks to attract at least as many researchers for 2020
Predicting breast tumor proliferation from whole-slide images : the TUPAC16 challenge
Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs.
The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI.
The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth.
This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task
Overview of the ImageCLEF 2021: Multimedia Retrieval in Medical, Nature, Internet and Social Media Applications
This paper presents an overview of the ImageCLEF 2021 lab that was organized as part of the Conference and Labs of the Evaluation Forum – CLEF Labs 2021. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2021, the 19th edition of ImageCLEF runs four main tasks: (i) a medical task that groups three previous tasks, i.e., caption analysis, tuberculosis prediction, and medical visual question answering and question generation, (ii) a nature coral task about segmenting and labeling collections of coral reef images, (iii) an Internet task addressing the problems of identifying hand-drawn and digital user interface components, and (iv) a new social media aware task on estimating potential real-life effects of online image sharing. Despite the current pandemic situation, the benchmark campaign received a strong participation with over 38 groups submitting more than 250 runs
The 2021 ImageCLEF Benchmark: Multimedia Retrieval in Medical, Nature, Internet and Social Media Applications
This paper presents the ideas for the 2021 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum — CLEF Labs 2021 in Bucharest, Romania. ImageCLEF is an ongoing evaluation initiative (active since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2021, the 19th edition of ImageCLEF will organize four main tasks: (i) a Medical task addressing visual question answering, a concept annotation and a tuberculosis classification task, (ii) a Coral task addressing the annotation and localisation of substrates in coral reef images, (iii) a DrawnUI task addressing the creation of websites from either a drawing or a screenshot by detecting the different elements present on the design and a new (iv) Aware task addressing the prediction of real-life consequences of online photo sharing. The strong participation in 2020, despite the COVID
pandemic, with over 115 research groups registering and 40 submitting
over 295 runs for the tasks shows an important interest in this benchmarking campaign. We expect the new tasks to attract at least as many researchers for 2021
ImageCLEF 2019: Multimedia Retrieval in Medicine, Lifelogging, Security and Nature
This paper presents an overview of the ImageCLEF 2019 lab, organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2019, the 17th edition of ImageCLEF runs four main tasks: (i) a medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with new data, (ii) a lifelog task (videos, images and other sources) about daily activities understanding, retrieval and summarization, (iii) a new security task addressing the problems of automatically identifying forged content and retrieve hidden information, and (iv) a new coral task about segmenting and labeling collections of coral images for 3D modeling. The strong participation, with 235 research groups registering, and 63 submitting over 359 runs, shows an important interest in this benchmark campaign
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.
Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting.
Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).
Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.
Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.
Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).
Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting
Overview of ImageCLEFtuberculosis 2018 ::detecting multi-drug resistance, classifying tuberculosis types and assessing severity scores
ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum (CLEF). ImageCLEF has historically focused on the multimodal and language-independent retrieval of images. Many tasks are related to image classification and the annotation of image data as well as the retrieval of images. The tuberculosis task was held for the first time in 2017 and had a very encouraging participation with 9 groups submitting results to these very challenging tasks. In 2018 there was a slightly higher participation. Three tasks were proposed in 2018: (1) the detection of drug resistances among tuberculosis cases, (2) the classification of the cases into five types of tuberculosis and (3) the assessment of a tuberculosis severity score. Many different techniques were used by the participants ranging from Deep Learning to graph-based approaches and best results were obtained by a variety of approaches with no clear technique dominating. Both, the detection of drug resistances and the classification of tuberculosis types had similar results than in the previous edition, the former remaining as a very difficult task. In the case of the severity score task, the results support the suitability of assessing the severity based only on the CT image, as the results obtained were very good
Overview of ImageCLEF 2017 tuberculosis task ::predicting tuberculosis type and drug resistances
ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum (CLEF). ImageCLEF has historically focused on the multimodal and language-independent retrieval of images. Many tasks are related to image classification and the annotation of image data as well as the retrieval of images. The tuberculosis task was held for the first time in 2017 and had a very encouraging participation with 9 groups submitting results to these very challenging tasks. Two tasks were proposed around tuberculosis: (1) the classification of the cases into five types of tuberculosis and (2) the detection of drug resistances among tuberculosis cases. Many different techniques were used by the participants ranging from Deep Learning to graph-based approaches and best results were obtained by a large variety of approaches. The prediction of tuberculosis types had relatively good performance but the detection of drug resistances remained a very difficult task. More research into this seems necessary