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Key	points	

Question:	What	is	the	discriminative	accuracy	of	deep-learning-based	algorithms	compared	with	

pathologists	in	detecting	lymph	node	metastases	in	tissue	sections	of	patients	with	breast	cancer.	

Finding:	In	cross	sectional	analyses	that	evaluated	32	algorithms	submitted	as	part	of	a	challenge,	7	

deep	learning	algorithms	showed	greater	discrimination	than	a	panel	of	11	pathologists,	with	an	

area	under	the	curve	of	0.994	(best	algorithm)	vs	0.884	(best	pathologist).	

Meaning:	These	findings	suggest	potential	utility	of	deep	learning	algorithms	for	pathological	

diagnosis,	but	require	assessment	in	a	clinical	setting.	

	 	



		

IMPORTANCE:	Application	of	deep	learning	techniques	to	whole-slide	pathology	images	can	

potentially	improve	diagnostic	accuracy	and	efficiency.	

OBJECTIVE:	Assess	the	performance	of	automated	deep	learning	systems	at	detecting	metastases	in	

hematoxylin	and	eosin	stained	tissue	sections	of	lymph	nodes	of	patients	with	breast	cancer	and	

compare	it	to	pathologists	in	a	diagnostic	setting.	

DESIGN,	SETTING	AND	PARTICIPANTS:	Between	November	2015	and	November	2016,	the	

CAMELYON16	challenge	invited	researchers	to	develop	automated	solutions	for	detecting	lymph	

node	metastases.	A	training	set	of	whole-slide	images	(n=270)	including	110	with	and	160	without	

nodal	metastases	as	verified	by	immunohistochemical	staining,	were	provided	to	challenge	

participants	to	build	their	algorithms.	Images	were	acquired	at	two	different	centers	in	the	

Netherlands	using	different	staining	protocols	and	whole-slide	image	scanners.	Next,	the	

performance	of	the	algorithms	was	evaluated	in	an	independent	test	set	of	129	whole-slide	images	

(49	with	and	80	without	tumor).	The	test	set	was	also	evaluated	by	11	pathologists	from	the	

Netherlands,	asked	to	ascertain	the	likelihood	of	nodal	metastases	for	each	image	in	a	2	hour	

session	simulating	routine	pathology	workflow	and	by	1	pathologist	without	time	constraint.	

EXPOSURE:	Deep	learning	algorithms	submitted	as	part	of	a	challenge,	a	panel	of	11	pathologists	in	

a	simulated	diagnostic	setting	(working	under	restricted	time)	and	one	pathologist	without	time	

constraint.	

MAIN	OUTCOMES	AND	MEASURES:	Outcomes	were	1)	the	presence	of	specific	metastatic	foci;	and	

2)	the	absence	versus	presence	of	lymph	node	metastasis	in	a	slide.	Evaluation	was	performed	using	

receiver	operating	characteristic	curve	analysis.	The	11	pathologists	participating	in	the	simulation	

exercise	rated	their	diagnostic	confidence	as:	definitely	normal,	probably	normal,	equivocal,	

probably	tumor	or	definitely	tumor.	



		

RESULTS:	The	AUC	for	the	algorithms	ranged	from	0.556	to	0.994.	The	top-performing	algorithm	

achieved	a	lesion-level	true	positive	fraction	comparable	to	that	of	the	pathologist	without	time	

constraint	(72.4%;	95%	CI,	64.3%-80.4%)	at	a	mean	of	0.0125	false	positives	per	normal	whole-slide	

image.	At	the	slide	level,	the	best	algorithm	(AUC	=	0.994;	95%	CI,	0.983-0.999)	performed	

significantly	better	than	pathologists	in	a	time	constrained	diagnostic	simulation	(mean	AUC	=	0.810;	

range,	0.738-0.884),	p<0.001.	The	top	5	algorithms	had	mean	AUC	that	was	comparable	to	the	

pathologist	interpreting	the	slides	in	the	absence	of	time	constraints	(mean	AUC	=	0.960;	range,	

0.923-0.994	versus	AUC	=	0.966;	95%	CI,	0.927-0.998).	

CONCLUSIONS	AND	RELEVANCE:	In	the	setting	of	a	competition,	some	deep	learning	algorithms	

achieved	better	diagnostic	performance	than	a	panel	of	11	pathologists	participating	in	a	simulation	

exercise	designed	to	mimic	routine	pathology	workflow;	performance	was	comparable	to	an	expert	

pathologist	in	the	absence	of	time	constraints.	Whether	this	approach	has	clinical	utility	will	require	

evaluation	in	a	clinical	setting.	

	 	



		

INTRODUCTION	

Full	digitalization	of	the	microscopic	evaluation	of	stained	tissue	sections	in	histopathology	has	

become	feasible	in	recent	years	because	of	advances	in	slide	scanning	technology	and	cost	reduction	

in	digital	storage.	Advantages	of	digital	pathology	include:	remote	diagnostics,	immediate	availability	

of	archival	cases,	and	easier	consultations	with	expert	pathologists1.	Also,	the	possibility	for	

computer-aided	diagnostics	may	be	advantageous2.	

Computerized	analysis	based	on	deep	learning	(eText	in	the	supplement)	has	shown	potential	

benefits	as	a	diagnostic	strategy.	Gulshan	et	al.3	and	Esteva	et	al.4	demonstrated	the	potential	of	

deep	learning	for	diabetic	retinopathy	screening	and	skin	lesion	classification,	respectively.	Analysis	

of	pathology	slides	is	also	an	important	application	of	deep	learning,	but	requires	evaluation	for	

diagnostic	performance.	

Accurate	breast	cancer	staging	is	an	essential	task	performed	by	pathologists	worldwide	to	inform	

clinical	management.	Assessing	the	extent	of	cancer	spread	by	histopathological	analysis	of	sentinel	

lymph	nodes	(SLN)	is	an	important	part	of	breast	cancer	staging.	The	sensitivity	of	SLN	assessment	

by	pathologists,	however,	is	not	optimal.	A	retrospective	study	showed	that	pathology	review	by	

experts	changed	the	nodal	status	in	24%	of	patients6.	Furthermore,	SLN	assessment	is	tedious	and	

time-consuming.	It	has	been	shown	that	deep	learning	algorithms	could	identify	metastases	in	SLN	

slides	with	100%	sensitivity	while	40%	of	the	slides	without	metastases	could	be	identified	as	such5.	

This	could	result	in	a	significant	reduction	in	pathologists'	workload.		

The	aim	of	this	study	was	to	investigate	the	potential	of	machine	learning	algorithms	for	detection	of	

metastases	in	SLN	slides	and	compare	these	to	the	performance	of	pathologists.	To	this	end,	the	

CAMELYON16	(CAncer	MEtastases	in	LYmph	nOdes	challeNge	2016)	competition	was	organized.	

Research	groups	around	the	world	were	invited	to	produce	an	automated	solution	for	breast	cancer	

metastases	detection	in	SLN.	Once	developed,	the	performance	of	each	algorithm	was	compared	to	



		

the	performance	of	a	panel	of	11	pathologists	participating	in	a	simulation	exercise	intended	to	

mimic	pathology	workflow.	 	



		

METHODS	

Image	datasets	

To	enable	the	development	of	diagnostic	machine	learning	algorithms,	we	collected	399	whole-slide	

images	of	sentinel	axillary	lymph	nodes	(SLN)	during	the	first	half	of	2015.	SLNs	were	retrospectively	

sampled	from	399	patients	that	underwent	surgery	for	breast	cancer	at	one	of	two	hospitals	in	the	

Netherlands.	The	need	for	informed	consent	was	waived	by	the	institutional	review	board	(research	

ethics	committee	of	Radboudumc;	file	number	2016-2761).	Whole-slide	images	where	anonymized	

before	making	them	available.	All	pathologists	participating	in	this	study	were	informed	of,	and	

agreed	with	the	rationale	and	goals	of	this	study.	The	participation	of	the	pathologists	was	

voluntarily	and	in	accordance	with	the	applicable	Dutch	rules	concerning	the	review	of	research	

ethics	committees	and	informed	consent.	In	addition,	the	need	to	obtain	informed	consent	from	the	

panel	of	pathologists	who	participated	in	the	study	was	waived	by	the	research	ethics	committee.	To	

enable	assessment	of	the	performance	of	the	algorithms	for	slides	containing	micro	and	

macrometastases	as	well	as	for	negative	slides,	stratified	random	sampling	was	performed	on	the	

basis	of	the	original	pathology	reports.	

Whole-slide	images	were	acquired	at	two	different	centers	—	Radboud	University	Medical	Center	

(RUMC),	and	University	Medical	Center	Utrecht	(UMCU)	—	using	two	different	scanners.	RUMC	

whole-slide	images	were	produced	with	a	3DHISTECH	Pannoramic	250	Flash	II	digital	slide	scanner	

with	a	20X	objective	lens	(specimen	level	pixel	size	0.243μm×0.243μm).	UMCU	whole-slide	images	

were	produced	using	the	Hamamatsu	XR	C12000	digital	slide	scanner	with	a	40X	objective	lens	

(specimen	level	pixel	size	0.226μm×0.226μm).		

Reference	standard	

All	metastases	present	in	the	slides	were	annotated	under	the	supervision	of	expert	pathologists.	

The	annotations	were	first	manually	drawn	by	two	students	(one	for	each	hospital)	and	then	every	



		

slide	was	checked	in	detail	by	one	of	the	two	pathologists	(PB	and	PvD	for	RUMC	and	UMCU,	

respectively;	eFigure	1	in	the	supplement).	In	clinical	practice,	pathologists	may	opt	to	use	

immunohistochemistry	(IHC)	to	resolve	diagnostic	uncertainty.	In	this	study,	obvious	metastases	

were	annotated	without	the	use	of	IHC	whereas,	for	all	difficult	cases	and	all	cases	appearing	

negative	on	H&E,	IHC	(anti-cytokeratin	mouse	monoclonal	antibody,	clone	CAM	5.2,	BD	Biociences,	

San	Jose,	USA)	was	used	(eFigure	2	in	the	supplement).	This	minimizes	false	negative	interpretations.	

IHC	is	the	most	accurate	method	for	metastasis	evaluation	and	has	little	interpretation	variability7-9.		

Pathologists	differentiate	between	macrometastases	(tumor	cell	cluster	diameter>2	mm),	

micrometastases	(tumor	cell	cluster	diameter	between	0.2	and	2	mm)	and	isolated	tumor	cells	

(solitary	tumor	cells	or	tumor	cell	clusters	with	diameter	≤	0.2	mm	and/or	less	than	200	cells).	The	

largest	available	metastasis	determines	the	slide-based	diagnosis.	Because	the	clinical	value	of	

having	only	isolated	tumor	cells	in	an	SLN	is	disputed,	we	did	not	include	such	slides	in	our	study	and	

also	did	not	penalize	missing	isolated	tumor	cells	in	slides	containing	micro-	or	macrometastases.	

Isolated	tumor	cells	were,	however,	annotated	in	slides	containing	micro	and	macrometastases	by	

the	pathologists	and	included	in	the	training	whole-slide	images.	The	set	of	images	was	randomly	

divided	into	a	training	(n	=	270)	and	a	test	set	(n	=	129;	details	in	Table	1).	Both	sets	included	slides	

with	both	micro	and	macrometastatic	tumor	foci	as	encountered	in	routine	pathology	practice.	

Coding	challenge	

In	the	first	(training)	stage	of	the	CAMELYON16	challenge,	participants	were	given	access	to	270	

whole-slide	images	of	digitally	scanned	tissue	sections.	Each	SLN	metastasis	in	these	images	was	

annotated	enabling	participants	to	build	their	algorithms.	In	the	evaluation	stage,	the	performance	

of	the	participants’	algorithms	was	tested	on	a	second	set	of	whole-slide	images	lacking	annotation	

of	SLN	metastases.	The	output	of	each	algorithm	was	sent	to	the	challenge	organizers	by	the	

participants	for	independent	evaluation.	Each	team	was	allowed	to	make	a	maximum	of	three	



		

submissions.	Multiple	submissions	were	only	allowed	if	the	methodology	of	the	new	submission	was	

distinct.	

Tasks	and	evaluation	metrics	

Two	tasks	were	defined:	1.	identification	of	individual	metastases	in	whole-slide	images,	and	2.	

classification	of	every	whole-slide	image	as	either	containing	or	lacking	SLN	metastases.	The	tasks	

had	different	evaluation	metrics	and	consequently	resulted	in	two	independent	algorithm	rankings.	

In	task	1,	algorithms	were	evaluated	for	their	ability	to	identify	specific	metastatic	foci	in	a	whole-

slide	image.	Challenge	participants	provided	a	list	of	potential	metastasis	locations	with	

accompanying	confidence	scores	in	the	range	from	0	to	1.	Algorithms	were	compared	using	a	

measure	derived	from	the	free-response	receiver	operator	characteristic	curve	(FROC)10.	The	FROC	

curve	shows	the	lesion-level	true	positive	fraction	versus	the	mean	number	of	false	positive	

detections	in	metastasis-free	slides	only.	The	FROC	true	positive	fraction	score	that	ranked	teams	in	

the	first	task	was	defined	as	the	mean	true	positive	fraction	at	6	predefined	false	positive	rates:	1/4,	

1/2,	1,	2,	4,	and	8	FPs	per	whole-slide	image.	Details	on	detection	criteria	for	individual	lesions	can	

be	found	in	the	eMethods	in	the	Supplement.	

Task	2	evaluated	the	algorithms’	ability	to	discriminate	between	49	slides	with	and	80	without	SLN	

metastases.	In	this	case,	identification	of	specific	foci	within	images	was	not	required.	Participants	

provided	a	confidence,	using	the	same	rating	schema	as	for	task	1,	indicating	the	probability	that	

each	whole-slide	image	contained	any	evidence	of	SLN	metastasis	from	breast	cancer.	The	area	

under	the	receiver	operating	characteristic	curve	(AUC)	was	used	to	compare	the	performance	of	

the	algorithms.	

Performance	of	human	experts	

To	establish	a	baseline	for	human	expert	performance,	two	experiments	were	conducted	using	the	

129	slides	in	the	test	set,	corresponding	to	the	tasks	defined	above.	In	the	first	experiment,	one	



		

expert	pathologist	(MCRFvD,	>10	years	of	experience	in	pathology	diagnostics,	>2	years	of	

experience	in	assessing	digitized	tissue	sections)	marked	every	single	metastasis	on	a	computer	

screen	using	high	magnification.	This	task	was	performed	without	any	time	constraint.	For	

comparison	with	the	algorithms	on	task	2,	the	pathologist	without	time	constraint	indicated	(during	

the	same	session)	the	locations	of	any	(micro	or	macro)	metastases	per	whole-slide	image.		

The	setup	without	time	constraint	does	not	yield	a	fair	measure	of	the	accuracy	of	the	routine	

diagnostic	process.	Preliminary	experiments	with	four	independent	pathologists	determined	that	

two	hours	was	a	realistic	amount	of	time	for	reviewing	these	129	whole-slide	images.	We,	therefore,	

asked	11	pathologists	to	independently	assess	the	129	glass	slides	in	the	test	set	in	a	simulation	

exercise	designed	to	mimic	routine	diagnostic	pathology	workflow:	a	time	limit	of	two	hours	was	set	

but	exceeding	this	limit	was	not	penalized	and	every	pathologist	was	allowed	time	to	finish	the	

entire	set.	The	panel	of	the	11	pathologists	(mean	age	47.7	years;	range	31-61	years)	included	one	

resident	pathologist	(third	year	of	residency)	and	ten	practicing	pathologists	(average	number	of	

years	practicing	16.4;	range	0-30;	0	is	for	one	pathologist	who	just	finished	a	5	year	residency	

program).	Three	of	these	pathologists	had	breast	pathology	as	a	special	interest	area.	

The	panel	of	11	pathologists	assessed	the	glass	slides	using	a	conventional	light	microscope	and	

determined	whether	there	was	or	was	not	any	evidence	of	SLN	metastasis	in	each	image.	This	

diagnostic	task	was	identical	to	and	used	the	same	images	as	those	evaluated	by	the	algorithms	in	

task	2.	Pathologists	indicated	the	level	of	confidence	in	their	interpretation	for	each	slide	using	five	

levels:	definitely	normal,	probably	normal,	equivocal,	probably	tumor,	definitely	tumor.	To	obtain	an	

empirical	ROC	curve,	the	threshold	was	varied	to	cover	the	entire	range	of	possible	ratings	by	the	

pathologists,	and	the	sensitivity	was	plotted	as	a	function	of	the	false	positive	fraction	(1	-	

specificity).	To	get	estimates	of	sensitivity	and	specificity	for	each	pathologist,	the	five	levels	of	

confidence	were	dichotomized	by	considering	the	confidence	levels	of	‘definitely	normal’	and	

‘probably	normal’	as	negative	and	all	other	levels	as	positive.	



		

Statistical	analysis.	All	statistical	tests	used	in	this	study	were	two-sided	considering	a	p-value	<	0.05	

as	significant.	

For	task	1	and	2,	confidence	intervals	of	the	FROC	true	positive	fraction	scores	and	areas	under	the	

ROC	curve	(AUC)	were	obtained	using	the	percentile	bootstrap	method11	for	the	algorithms,	the	

panel	of	11	pathologists,	and	the	pathologist	without	time-constraint.	The	AUC	values	for	the	

pathologists	were	calculated	based	on	their	provided	five-point,	ordinal	scores.	

For	comparison	of	the	AUC	of	the	individual	algorithms	against	the	panel	of	11	pathologists	in	task	2,	

we	used	multiple	reader	multiple	case	ROC	(MRMC)	analysis.	The	MRMC	paradigm	is	frequently	

used	for	evaluating	the	performance	of	medical	image	interpretation	and	allows	comparison	of	

multiple	readers	reading	the	same	cases	while	accounting	for	the	different	components	of	variance	

contributing	to	the	interpretations12,13.	Both	the	panel	of	readers	and	the	algorithms	as	well	as	the	

cases	were	treated	as	random	effects	in	this	analysis.	The	panel	of	11	pathologists	represent	the	

group	of	readers	for	modality	one	(diagnosing	on	glass	slides)	and	an	algorithm	represents	the	

reader	for	modality	two	(whole-slide	images).	Cases	are	the	same	set	of	slides/images	seen	by	the	

panel	and	the	algorithm.	The	AUC	was	the	quantitative	measure	of	performance	in	this	analysis.	The	

Dorfman-Berbaum-Metz	significance	testing,	with	Hillis	improvements14	was	performed	to	test	the	

null	hypothesis	that	all	effects	are	zero.	The	Bonferroni	correction	was	used	to	adjust	the	p-values	

for	multiple	comparisons	in	the	MRMC	analysis	(independent	comparison	of	each	of	the	32	

algorithms	and	the	panel	of	pathologists).	

Additionally,	a	permutation	test15	was	performed	to	assess	whether	there	was	a	statistically	

significant	difference	between	the	area	under	the	ROC	curve	of	the	pathologists	detecting	macro-

metastases	compared	to	micro-metastases16.	This	test	was	also	repeated	for	comparing	the	

performance	of	pathologists	for	different	histotypes:	infiltrating	ductal	cancer	versus	all	other	

histotypes.	As	the	controls	(slides	not	containing	metastases)	were	the	same	in	both	groups,	the	

permutation	was	only	performed	across	the	slides	containing	metastases.	This	test	was	performed	



		

for	each	individual	pathologist	and	subsequently	Bonferroni	correction	was	applied	to	the	obtained	

p-values.	

No	prior	data	was	available	for	the	performance	of	algorithms	in	this	task.	Therefore,	no	power	

analysis	was	used	to	predetermine	the	sample	size.	

iMRM	3.2	application	developed	by	the	Food	and	Drug	Administration	was	used	for	MRMC	analysis	

(available	at	https://github.com/DIDSR/iMRMC). An	in-house	developed	script	in	Python	2.7	was	

used	to	obtain	the	percentile	bootstrap	CIs	for	the	FROC	and	AUC	scores	(available	at	

https://github.com/computationalpathologygroup/CAMELYON16).	A	custom	script	was	written	to	

perform	the	permutation	tests	and	can	be	found	at	the	same	location.	 	



		

RESULTS	

The	expert	pathologist	without	time	constraint	required	approximately	30	hours	for	assessing	129	

whole-slide	images.	She	did	not	produce	any	false	positives	in	task	1	(i.e.	non-tumorous	tissue	

indicated	as	metastasis)	but	failed	to	identify	27.6%	of	individual	metastases	(lesion-level	true	

positive	fraction	of	72.4%	(95%	CI,	64.3%-80.4%))	that	were	manifest	when	immunohistochemical	

staining	was	performed.	At	the	slide	level	(task	2),	the	pathologist	achieved	a	sensitivity	of	93.8%	

(95%	CI,	86.9%-100.0%),	a	specificity	of	98.7%	(95%	CI,	96.0%-100.0%),	and	an	AUC	of	0.966	(95%	CI,	

0.927-0.998).	The	11	pathologists	in	the	simulation	exercise	spent	a	median	of	120	minutes	for	129	

slides	(range,	72-180	minutes).	They	achieved	a	mean	sensitivity	of	62.8%	(95%	CI,	58.9%-71.9%)	

with	a	mean	specificity	of	98.5%	(95%	CI,	97.9%-99.1%).	The	mean	AUC	was	0.810	(range,	0.738-

0.884)	(eTable	1	and	eTable	2	in	the	Supplement	show	results	for	individual	pathologists).	eFigure	3	

in	the	supplement	shows	the	ROC	curves	for	each	of	the	11	pathologists	and	the	pathologist	

assessing	the	slides	without	time	constraint.	

The	pathologists’	results	were	further	analyzed	for	their	ability	to	detect	micro	versus	

macrometastases	(see	eResults	in	the	supplement).	It	was	found	that	the	panel	of	11	pathologists	

had	a	mean	sensitivity	of	92.9%	(95%	CI,	90.5%-95.8%)	and	mean	AUC	of	0.964	(range,	0.924-1.0)	for	

detecting	macrometastases	compared	to	sensitivity	of	38.3%	(95%	CI,	32.6%-52.9%)	and	AUC	of	

0.685	(range,	0.582-0.808)	for	micrometastases.	Even	the	best	performing	pathologist	in	the	panel	

missed	37.1%	of	the	cases	with	only	micrometastases.	

Algorithm	performance	

Between	November	2015	and	November	2016,	390	research	teams	signed	up	for	the	challenge.	

Twenty-three	teams	submitted	32	methods	for	evaluation	by	the	closing	date	(details	in	eTable	3	

and	eMethods	in	the	Supplement).	The	majority	of	entries	(25/32)	were	based	on	deep	

convolutional	neural	networks	(eText	in	the	Supplement).	Besides	deep	learning,	a	variety	of	other	

approaches	were	attempted	by	CAMELYON16	participants.	Different	statistical	and	structural	



		

texture	features	were	extracted	(e.g.	color	SIFT	features17,	local	binary	patterns18,	features	based	on	

gray-level	co-occurrence	matrix19,	etc.)	combined	with	widely	used	supervised	classifiers	(e.g.	

support	vector	machines20,	random	forest	classifiers21).	The	performance	and	ranking	of	the	entries	

for	the	two	tasks	are	shown	in	Table	2.	Overall,	deep	learning-based	methods	performed	

significantly	better	than	other	methods:	the	top-performing	19	entries	in	both	tasks	all	used	deep	

convolutional	neural	networks	as	the	underlying	methodology	(see	Table	2).	Detailed	method	

description	for	the	participating	teams	can	be	found	in	eMethods	in	the	Supplement.	

Task1:	Metastasis	identification	

The	results	of	metastasis	identification,	as	measured	by	the	FROC	true	positive	fraction	score,	are	

presented	in	Table	2	(eTable	4	in	the	supplement	provides	a	more	detailed	summary	of	the	results	

for	the	FROC	analysis).	The	best	algorithm,	from	team	HMS	&	MIT	(II),	achieved	an	overall	FROC	true	

positive	fraction	score	of	0.807	(95%	CI,	0.732	-	0.889).	The	algorithm	by	team	HMS	&	MGH	(III)	

ranked	2nd	in	this	task	with	an	overall	score	of	0.760	(95%	CI,	0.692	-	0.857).	Figure	1	presents	the	

FROC	curves	for	the	top-five	performing	systems	in	the	first	task	(FROC	curves	of	all	methods	in	

eFigure	4	in	the	supplement).	Figure	2	shows	several	examples	of	metastases	in	the	test	set	of	

CAMELYON16	and	the	probability	maps	produced	by	the	top-three	ranked	algorithms	(see	eFigure	5	

in	the	supplement).	

Task	2:	Whole-slide	image	classification	

The	results	for	all	automated	systems,	sorted	by	their	performance,	are	presented	in	Table	2.	

Figures	3a	and	3b	show	the	ROC	curves	of	the	top-five	ranked	teams	along	with	the	operating	points	

of	the	pathologists.	eFigure	6	in	the	supplement	shows	the	ROC	curves	for	all	methods.	All	32	

algorithms	were	compared	to	the	panel	of	pathologists	using	MRMC	analysis	(see	Table	2).	

The	top-performing	system	by	team	HMS	&	MIT	(II)	was	a	GoogLeNet	model22,	which	outperformed	

all	other	CAMELYON16	submissions	with	an	AUC	of	0.994	(95%	CI,	0.983-0.999).	This	AUC	exceeded	



		

the	mean	performance	of	the	11	pathologists	(mean	AUC	of	0.810	(range,	0.738-0.884))	in	the	

diagnostic	simulation	exercise	(p<0.001,	calculated	using	MRMC	analysis23,	see	Table	2).	The	top	

performing	algorithm	had	an	AUC	comparable	to	that	of	the	pathologist	without	time	constraint	

(AUC	=	0.966	(95%	CI,	0.927-0.998)).	Additionally,	the	operating	points	of	all	11	pathologists	were	

below	the	ROC	curve	of	this	method	(Figure	3a	and	3b).	The	ROC	curves	for	the	two	leading	

algorithms,	the	pathologist	without	time	constraint,	the	mean	ROC	curve	over	the	panel	of	11	

pathologists,	and	the	panel	participants	with	the	highest	and	lowest	AUCs	are	shown	in	Figures	3c	

and	3d.	

The	second	place	algorithm	by	team	HMS	&	MGH	(III)	used	a	fully	convolutional	ResNet-10124	model.	

This	system	achieved	an	overall	AUC	of	0.976	(95%	CI,	0.941-0.999),	and	yielded	the	highest	AUC	in	

detecting	macrometastases	(AUC	1.0).	An	earlier	submission	by	this	team,	HMS	&	MGH	(I),	achieved	

an	overall	AUC	of	0.964	(95%	CI,	0.928-0.989)	and	ranked	third.	The	fourth	highest-ranked	team	was	

CULab	(III)	with	a	16-layer	VGG-net25,	followed	by	the	first	submission	of	the	team	HMS	&	MIT	(I)	

with	a	22-layer	GoogLeNet.	Overall,	7	of	the	32	submitted	algorithms	had	significantly	higher	AUCs	

than	the	panel	of	11	pathologists	(see	Table	2	for	the	individual	p-values	calculated	using	MRMC	

analysis).	

The	algorithms’	results	were	further	analyzed	for	comparing	their	performance	in	detecting	micro	

and	macrometastases	(see	eResults	and	eTable5	in	the	supplement).	The	top-performing	algorithms	

performed	similarly	to	the	best	performing	pathologists	in	detecting	macrometastases.	Ten	of	the	

top-performing	algorithms	achieved	better	AUCs	in	detecting	micrometastases	than	the	best	

pathologist	in	the	panel	of	11	(mean	algorithm	AUC	=	0.885	with	range	0.812-0.997	versus	best	

pathologist	AUC	=	0.808	(95%	CI,	0.704-0.908)).	

	 	



		

DISCUSSION	

The	CAMELYON16	challenge	demonstrated	that	some	deep	learning	algorithms	were	able	to	achieve	

better	area	under	the	ROC	curve	(AUC)	than	a	panel	of	11	pathologists	participating	in	a	simulation	

exercise	for	detection	of	lymph	node	metastases	of	breast	cancer.	To	our	knowledge,	this	is	the	first	

study	that	shows	that	interpretation	of	pathology	images	can	be	performed	by	deep	learning	based	

algorithms	at	an	accuracy	level	that	rivals	human	performance.	

To	obtain	an	upper	limit	on	what	level	of	performance	could	be	achieved	by	visual	assessment	of	

H&E-stained	tissue	sections,	a	single	expert	pathologist	evaluated	whole-slide	images	at	high	

magnification	in	details	and	marked	every	single	cluster	of	tumor	cells.	This	took	the	pathologist	30	

hours	for	129	slides,	which	is	infeasible	in	clinical	practice.	Although	this	pathologist	was	very	good	

at	differentiating	metastases	from	false	positives,	27.6%	of	metastases	were	missed	compared	to	

the	reference	standard	obtained	with	the	use	of	immunohistochemical	staining	to	confirm	the	

presence	of	tumor	cells	in	cases	where	interpretation	of	slides	was	not	clear-cut.	This	illustrates	the	

relatively	high	probability	of	overlooking	tumor	cells	in	H&E-stained	tissue	sections.	At	the	slide	

level,	a	high	overall	sensitivity	and	specificity	for	the	expert	pathologist	analyzing	each	case	without	

time	constraint	was	observed.	

To	estimate	the	accuracy	of	pathologists	in	a	routine	diagnostic	setting,	11	pathologists	assessed	the	

SLNs	in	a	simulated	exercise.	The	setting	resembled	diagnostic	practice	in	The	Netherlands,	where	

use	of	IHC	is	mandatory	for	cases	found	negative	on	H&E	reading.	Compared	to	the	expert	

pathologist	interpreting	the	slides	without	time	constraint,	these	pathologists	were	less	accurate,	

especially	on	the	slides	which	only	contained	micrometastases.	Even	the	best	performing	pathologist	

on	the	panel	missed	over	37%	of	the	cases	with	only	micrometastases.	Macrometastases	were	much	

less	often	missed.	Specificity	remained	high,	indicating	that	the	task	did	not	lead	to	a	high	rate	of	

false	positives.	



		

The	best	algorithm	achieved	similar	true	positive	fraction	as	the	pathologist	without	time	constraint	

when	producing	a	mean	of	1.25	false	positive	lesions	in	100	whole-slide	images	and	performed	

better	when	allowing	for	slightly	more	false	positives.	On	the	slide	level,	the	leading	algorithms	

performed	better	than	the	11	pathologists	in	the	simulation	exercise.	

All	of	the	32	algorithms	submitted	to	CAMELYON16	used	a	discriminative	learning	approach	to	

identify	metastases	in	whole-slide	images.	The	common	denominator	for	the	algorithms	in	the	

higher	echelons	of	the	ranking	was	that	they	used	advanced	convolutional	neural	networks.	

Algorithms	based	on	manually	engineered	features	performed	less	well.	

Despite	the	use	of	advanced	convolutional	neural	network	architectures	such	as	16-layer	VGG-Net25,	

22-layer	GoogLeNet22,	and	101-layer	ResNet24,	the	ranking	among	teams	using	these	techniques	

varied	significantly,	ranging	from	1st	to	29th.	However,	auxiliary	strategies	to	improve	system	

generalization	and	performance	seemed	more	important.	For	example,	team	HMS	&	MIT	improved	

their	AUC	in	task	2	from	0.923	to	0.994	by	adding	a	standardization	technique26	to	help	them	deal	

with	stain	variations.	Other	strategies	include	exploiting	invariances	to	augment	training	data	(e.g.	

tissue	specimens	are	rotation	invariant),	and	addressing	class	imbalance	(i.e.	more	normal	tissue	

than	metastases)	by	different	training	data	sampling	strategies	(eDiscussion	contains	further	

examples	of	properties	that	distinguish	the	best-performing	methods).	

Previous	studies	on	diagnostic	imaging	tasks	in	which	deep	learning	reached	human-level	

performance	such	as	detection	of	diabetic	retinopathy	in	retinal	fundus	photographs	used	reference	

standard	based	on	the	consensus	of	human	experts3.	This	study,	in	comparison,	generated	reference	

standard	using	additional	immunohistochemical	staining,	yielding	an	independent	reference	against	

which	human	pathologists	could	also	be	compared.	

	

	



		

Limitations	

This	study	has	a	number	of	limitations.	The	test	dataset	on	which	algorithms	and	pathologists	were	

evaluated	was	enriched	with	cases	containing	metastases	and,	specifically,	micro-metastases	and	

thus	is	not	directly	comparable	to	the	mix	of	cases	pathologists	encounter	in	clinical	practice.	Given	

the	reality	that	most	sentinel	lymph	nodes	do	not	contain	metastases,	the	dataset	curation	was	

needed	to	achieve	a	well-rounded	representation	of	what	is	encountered	in	clinical	practice	without	

including	an	exorbitant	number	of	slides.	To	validate	the	performance	of	machine	learning	

algorithms,	such	as	those	developed	in	the	Camelyon16	challenge,	a	prospective	study	is	required.	In	

addition,	algorithms	were	specifically	trained	to	discriminate	between	normal	and	cancerous	tissue	

in	the	background	of	lymph	node	histological	architecture,	but	might	be	unable	to	identify	rare	

events	such	as	co-occurring	pathologies	(e.g.	lymphoma)	or	breast	tissue.	In	addition,	algorithm	run-

time	was	not	included	as	a	factor	in	the	evaluation	but	might	be	relevant	in,	for	example,	frozen	

section	analysis.	

In	this	study,	every	pathologist	was	given	a	single	H&E-stained	slide	per	patient	to	determine	the	

presence	or	absence	of	breast	cancer	metastasis.	In	a	real	clinical	setting,	multiple	sections	are	

evaluated	for	every	lymph	node,	and	typically	multiple	levels	for	each	section	are	available.	Also,	in	

most	hospitals	pathologists	request	additional	IHC	staining	in	equivocal	cases.	Especially	for	slides	

containing	only	micro-metastases,	this	is	a	relevant	factor	affecting	diagnostic	performance.	The	

detection	of	other	pathologies	in	the	SLN	(e.g.	lymphoma)	which	is	relevant	in	routine	diagnostics	

was	not	included	in	the	present	study.	

In	addition,	the	simulation	exercise	invited	pathologists	to	review	129	H&E	stained	slides	in	about	

two	hours	to	determine	the	presence	of	macroscopic	or	microscopic	SLN	metastasis.	Although	

feasible	in	the	context	of	this	simulation,	this	may	not	represent	the	work	pace	in	other	settings.	

Less	time	constraint	on	task	completion	may	increase	the	accuracy	of	SLN	diagnostic	review.	In	



		

addition,	pathologists	may	rely	on	IHC	staining	and	the	knowledge	that	all	negative	H&E	slides	will	

undergo	review.	

Conclusions	

In	the	setting	of	a	challenge	competition,	some	deep	learning	algorithms	achieved	better	diagnostic	

performance	than	a	panel	of	11	pathologists	participating	in	a	simulation	exercise	designed	to	mimic	

routine	pathology	workflow;	performance	was	comparable	to	an	expert	pathologist	in	the	absence	

of	time	constraints.	Whether	this	approach	has	clinical	utility	will	require	evaluation	in	a	clinical	

setting.	

	 	



		

ACKNOWLEDGMENTS	

The	authors	are	grateful	to	the	organizing	committee	of	the	2016	IEEE	International	Symposium	on	

Biomedical	Imaging	(ISBI)	for	hosting	the	workshop	held	as	part	of	the	study	reported	in	this	article.	

They	also	acknowledge	their	collaborators	and	financial	support	from	their	funding	agencies.	

Funding/Support:	Data	collection	and	annotation	were	funded	by	Stichting	IT	Projecten	(STITPRO)	

Nijmegen,	The	Netherlands	and	by	the	Fonds	Economische	Structuurversterking	(tEPIS/TRAIT	

project;	LSH-FES	Program	2009;	DFES1029161	and	FES1103JJT8U).	The	latter	also	supported	(in	kind)	

web-access	to	WSI.	BEB	was	financially	support	by	the	European	Union	FP7	funded	VPH-PRISM	

project	under	grant	agreement	601040.	

Reproducible	Research	Statement:	The	image	data	used	for	CAMELYON16	training	and	testing	sets	

along	with	the	lesion	annotations	are	publicly	available	at	(https://camelyon16.grand-

challenge.org/download/).	Because	of	the	large	size	of	the	dataset,	multiple	options	are	provided	for	

accessing/downloading	the	data.	Python	and	Matlab	codes	used	for	performing	evaluations	of	the	

performance	of	the	algorithms	are	publicly	available	at	

(https://github.com/computationalpathologygroup/CAMELYON16).	

Access	to	Data	Statement:	Babak	Ehteshami	Bejnordi	had	full	access	to	all	of	the	data	in	the	study	

and	takes	responsibility	for	the	integrity	of	the	data	and	the	accuracy	of	the	data	analysis.	

Conflict	of	Interest	Disclosures:	All	authors	have	completed	and	submitted	the	ICMJE	Form	for	

Disclosure	of	Potential	Conflicts	of	Interest.	Mr.	Ehteshami	Bejnordi	reports	personal	fees	from	

European	Union,	during	the	conduct	of	the	study.	Dr.	Veta	reports	grants	from	Netherlands	

Organization	for	Scientific	Research	(NWO),	outside	the	submitted	work.	Dr.	van	Ginneken	reports	

other	from	Thirona,	grants	and	other	from	Mevis	Medical	Solutions,	outside	the	submitted	work.	Dr.	

Karssemeijer	reports	other	from	Volpara	Solutions	Ltd	(Wellington,	New	Zealand),	personal	fees	and	

other	from	QView	Medical	inc.	(Los	Altos,	CA),	personal	fees	and	other	from	ScreenPoint	Medical	BV	

(Nijmegen,	Netherlands),	outside	the	submitted	work.	Dr.	van	der	Laak	reports	grants	from	Stichting	

IT	projecten	Nijmegen,	The	Netherlands,	non-financial	support	from	Fonds	Economische	



		

Structuurversterking,	grants	from	European	Union,	during	the	conduct	of	the	study;	personal	fees	

from	Philips,	personal	fees	from	ContextVision,	personal	fees	from	Diagnostic	Services	Manitoba,	

Winnipeg,	Canada,	outside	the	submitted	work.	Dr.	Manson	and	Mr.	Geessink	report	grants	from	

Dutch	Cancer	Society,	outside	the	submitted	work.	Dr.	Beck,	Dr.	Beca,	Dr.	Khosla,	and	Dr.	Wang	

report	personal	fees	from	PathAI	inc.,	outside	the	submitted	work.	Dr.	Beca	also	reports	non-

financial	support	from	Nvidia	Corp.,	other	from	Nvidia	Corp.,	outside	the	submitted	work.	Dr.	

Ruusuvuori	reports	grants	from	Finnish	Funding	Agency	for	Innovation	(269/31/2015),	during	the	

conduct	of	the	study.	

Role	of	the	Funder/Sponsor:	The	funders	and	sponsors	had	no	role	in	the	design	and	conduct	of	the	

study;	collection,	management,	analysis,	and	interpretation	of	the	data;	preparation,	review,	or	

approval	of	the	manuscript;	and	decision	to	submit	the	manuscript	for	publication.	

	 	



		

The	CAMELYON16	Consortium:	
Meyke	Hermsen,	BS;	Quirine	F	Manson,	MD,	MS;	Maschenka	Balkenhol,	MD,	MS;	Oscar	Geessink,	MS;	Nikolaos	
Stathonikos,	MS;	Marcory	CRF	van	Dijk,	MD,	PhD;	Peter	Bult,	MD,	PhD;	Francisco	Beca,	MD,	MS;	Andrew	H	Beck,	
MD,	PhD;	Dayong	Wang,	PhD;	Aditya	Khosla,	PhD;	Rishab	Gargeya;	Humayun	Irshad,	PhD;	Aoxiao	Zhong,	BS;	Qi	
Dou,	MS;	Quanzheng	Li,	PhD;	Hao	Chen,	PhD;	Huang-Jing	Lin,	MS;	Pheng-Ann	Heng,	PhD;	Christian	Haß,	MS;	Elia	
Bruni,	PhD;	Quincy	Wong,	BS,	MBA;	Ugur	Halici,	PhD;	Mustafa	Ümit	Öner,	MS;	Rengul	Cetin	Atalay,	MD;	Matt	
Berseth,	MS;	Vitali	Khvatkov,	MS;	Alexei	Vylegzhanin,	MS;	Oren	Kraus,	MS;	Muhammad	Shaban,	MS;	Nasir	
Rajpoot,	PhD;	Ruqayya	Awan,	MS;	Korsuk	Sirinukunwattana,	PhD;	Talha	Qaiser,	BS;	Yee-Wah	Tsang,	MD;	David	
Tellez,	MS;	Jonas	Annuscheit,	BS;	Peter	Hufnagl,	PhD;	Mira	Valkonen,	MS;	Kimmo	Kartasalo,	MS;	Leena	Latonen,	
PhD;	Pekka	Ruusuvuori,	PhD;	Kaisa	Liimatainen,	MS;	Shadi	Albarqouni,	PhD;	Bharti	Mungal,	MS;	Ami	George,	MS;	
Stefanie	Demirci,	PhD;	Nassir	Navab,	PhD;	Seiryo	Watanabe,	MS;	Shigeto	Seno,	PhD;	Yoichi	Takenaka,	PhD;	Hideo	
Matsuda,	PhD;	Hady	Ahmady	Phoulady,	PhD;	Vassili	Kovalev,	PhD;	Alexander	Kalinovsky,	MS;	Vitali	Liauchuk,	MS;	
Gloria	Bueno,	PhD;	M.	Milagro	Fernandez-Carrobles,	PhD;	Ismael	Serrano,	PhD;	Oscar	Deniz,	PhD;	Daniel	
Racoceanu,	PhD;	Rui	Venâncio,	MS;	

	

Department	of	Pathology,	Radboud	University	Medical	Center,	Nijmegen,	The	Netherlands	(Hermsen,	Balkenhol,	
Geessink,	Bult,	Tellez).	Department	of	Pathology,	University	Medical	Center	Utrecht,	Utrecht,	The	Netherlands	
(Manson,	Stathonikos).	Laboratorium	Pathologie	Oost	Nederland,	Hengelo,	Netherlands	(Geessink).	PathAI	inc.,	
Cambridge,	MA,	USA	(Beck,	Wang,	Khosla).	BeckLab,	Beth	Israel	Deaconess	Medical	Center,	Harvard	Medical	
School,	Boston,	MA,	USA	(Beca,	Beck,	Wang,	Irshad).	Rijnstate	Hospital,	Arnhem,	The	Netherlands	(van	Dijk).	
Computer	Science	and	Artificial	Intelligence	Laboratory,	Massachusetts	Institute	of	Technology,	Cambridge,	MA,	
USA	(Khosla).	The	Harker	School,	San	Jose,	CA,	USA	(Gargeya).	Center	for	Clinical	Data	Science,	Gordon	center	for	
medical	imaging,	Massachusetts	General	Hospital,	Harvard	Medical	School,	Boston,	MA,	USA	(Zhong,	Dou,	Li).	
The	Chinese	University	of	Hong	Kong,	Hong	Kong	(Lin,	Chen,	Dou,	Heng).	ExB	Research	and	Development	GmbH,	
Germany	(Haß,	Bruni).	Independent	participant	(Wong).	Department	of	Electrical	and	Electronics	Engineering,	
Middle	East	Technical	University,	Turkey	(Halici,	Öner).	GSNAS	Neuroscience	and	Neurotechnology,	Middle	East	
Technical	University,	Turkey	(Halici).	CanSyL,	Graduate	School	of	Informatics,	Middle	East	Technical	University,	
Turkey	(Atalay).	NLP	LOGIX,	Jacksonville,	FL,	USA	(Berseth).	Smart	Imaging	Technologies	Co.,	Houston,	TX,	USA	
(Khvatkov,	Vylegzhanin).	Department	of	Electrical	and	Computer	Engineering,	University	of	Toronto,	Toronto,	
Ontario,	Canada	(Kraus).	Tissue	Image	Analytics	Lab,	Department	of	Computer	Science,	University	of	Warwick,	
UK	(Shaban,	Rajpoot,	Qaiser,	Sirinukunwattana).	Department	of	Pathology,	University	Hospitals	Coventry	and	
Warwickshire	NHS	Trust,	UK	(Rajpoot).	Department	of	Computer	Science	and	Engineering,	Qatar	University,	
Qatar	(Awan).	Department	of	Pathology,	University	Hospitals	Coventry	and	Warwickshire	NHS	Trust,	UK	(Tsang).	
HTW	Berlin,	Berlin,	Germany	(Annuscheit,	Hufnagl).	BioMediTech	Institute	and	Faculty	of	Medicine	and	Life	
Sciences,	Tampere	University	of	Technology,	Tampere,	Finland	(Valkonen,	Liimatainen,	Kartasalo,	Ruusuvuori).	
BioMediTech	Institute	and	Faculty	of	Biomedical	Science	and	Engineering,	Tampere	University	of	Technology,	
Tampere,	Finland	(Kartasalo).	Prostate	Cancer	Research	Center,	Faculty	of	Medicine	and	Life	Sciences	and	
BioMediTech,	University	of	Tampere,	Tampere,	Finland	(Latonen).	Faculty	of	Computing	and	Electrical	
Engineering,	Tampere	University	of	Technology,	Pori,	Finland	(Ruusuvuori).	Technical	University	of	Munich,	
Munich,	Germany	(Albarqouni,	Mungal,	George,	Demirci,	Navab).	Department	of	Bioinformatic	Engineering,	
Osaka	University	(Watanabe,	Seno,	Takenaka,	Matsuda).	University	of	South	Florida,	FL,	USA	(Ahmady	Phoulady).	
Biomedical	Image	Analysis	Department,	United	Institute	of	Informatics	Problems,	Belarus	National	Academy	of	
Sciences,	Minsk,	Belarus	(Kovalev,	Kalinovsky,	Liauchuk).	VISILAB,	University	of	Castilla-La	Mancha,	Ciudad	Real,	
Spain	(Bueno,	Fernandez-Carrobles,	Serrano,	Deniz).	Sorbonne	Universiteś,	UPMC	Univ	Paris	06,	CNRS,	INSERM,	
Laboratoire	d’Imagerie	Biomédicale	(LIB),	Paris,	France	(Racoceanu).	Pontifical	Catholic	University	of	Peru,	San	
Miguel,	Lima,	Peru	(Racoceanu).	Sorbonne	University,	UPMC-Univ.	Paris	6,	Paris,	France	(Venâncio).	

	 	



		

The	CAMELYON16	Collaborators:	
Ewout	Schaafsma,	MD,	PhD;	Benno	Kusters,	MD,	PhD;	Michiel	vd	Brand,	MD;	Lucia	Rijstenberg,	MD;	Michiel	
Simons,	MD;	Carla	Wauters,	MD,	PhD;	Willem	Vreuls,	MD;	Heidi	Kusters,	MD,	PhD;	Robert	Jan	van	Suylen,	MD,	
PhD;	Hans	van	der	Linden,	MD,	PhD;	and	Monique	Koopmans,	MD,	PhD;	Gijs	van	Leeuwen,	MD,	PhD;	and	
Matthijs	van	Oosterhout,	MD,	PhD;	Peter	van	Zwam,	MD;	

Department	of	Pathology,	Radboud	University	Medical	Center,	Nijmegen,	The	Netherlands	(Schaafsma,	Kusters,	
vd	Brand,	Rijstenberg,	Simons).	Canisius-Wilhelmina	Hospital,	Nijmegen,	The	Netherlands	(Wauters,	Vreuls,	
Kusters).	Jeroen	Bosch	Ziekenhuis,	Den	Bosch,	The	Netherlands	(Suylen,	van	der	Linden,	Koopmans).	St.	Antonius	
Ziekenhuis,	Nieuwegein,	The	Netherlands	(van	Leeuwen,	van	Oosterhout).	Stichting	PAMM,	Eindhoven,	The	
Netherlands	(van	Zwam)	

	



		

References	

1.	 Griffin	J,	Treanor	D.	Digital	pathology	in	clinical	use:	where	are	we	now	and	what	is	holding	
us	back?	Histopathology.	2017;70(1):134-145.	

2.	 Madabhushi	A,	Lee	G.	Image	analysis	and	machine	learning	in	digital	pathology:	Challenges	
and	opportunities.	Med.	Image	Anal.	2016;33:170-175.	

3.	 Gulshan	V,	Peng	L,	Coram	M,	et	al.	Development	and	validation	of	a	deep	learning	algorithm	
for	 detection	 of	 diabetic	 retinopathy	 in	 retinal	 fundus	 photographs.	 JAMA.	
2016;316(22):2402-2410.	

4.	 Esteva	 A,	 Kuprel	 B,	 Novoa	 RA,	 et	 al.	 Dermatologist-level	 classification	 of	 skin	 cancer	 with	
deep	neural	networks.	Nature.	02/02/print	2017;542(7639):115-118.	

5.	 Litjens	G,	Sánchez	CI,	Timofeeva	N,	et	al.	Deep	learning	as	a	tool	for	increased	accuracy	and	
efficiency	of	histopathological	diagnosis.	Sci.	Rep.	05/23/online	2016;6:26286.	

6.	 Vestjens	JHMJ,	Pepels	MJ,	de	Boer	M,	et	al.	Relevant	impact	of	central	pathology	review	on	
nodal	classification	in	individual	breast	cancer	patients.	Ann.	Oncol.	2012;23(10):2561-2566.	

7.	 Reed	 J,	 Rosman	M,	 Verbanac	 KM,	Mannie	 A,	 Cheng	 Z,	 Tafra	 L.	 Prognostic	 Implications	 of	
Isolated	Tumor	Cells	and	Micrometastases	in	Sentinel	Nodes	of	Patients	with	Invasive	Breast	
Cancer:	 10-Year	 Analysis	 of	 Patients	 Enrolled	 in	 the	 Prospective	 East	 Carolina	
University/Anne	Arundel	Medical	Center	Sentinel	Node	Multicenter	Study.	J.	Am.	Coll.	Surg.	
2009/03/01	2009;208(3):333-340.	

8.	 Chagpar	 A,	Middleton	 LP,	 Sahin	 AA,	 et	 al.	 Clinical	 outcome	 of	 patients	 with	 lymph	 node-
negative	 breast	 carcinoma	 who	 have	 sentinel	 lymph	 node	 micrometastases	 detected	 by	
immunohistochemistry.	Cancer.	2005;103(8):1581-1586.	

9.	 Pendas	S,	Dauway	E,	Cox	CE,	Giuliano	R.	Sentinel	node	biopsy	and	cytokeratin	 staining	 for	
the	 accurate	 staging	 of	 478	 breast	 cancer	 patients/Discussion.	 The	 American	 surgeon.	
1999;65(6):500.	

10.	 Chakraborty	 DP.	 Recent	 developments	 in	 imaging	 system	 assessment	methodology,	 FROC	
analysis	 and	 the	 search	 model.	 Nucl.	 Instrum.	 Methods.	 Phys.	 Res.	 A:	 Accelerators,	
spectrometers,	detectors	and	associated	equipment.	2011;648	Supplement	1:S297-S301.	

11.	 Efron	 B.	 Bootstrap	 Methods:	 Another	 Look	 at	 the	 Jackknife.	 Ann.	 Statist.	 1979/01	
1979;7(1):1-26.	

12.	 Gallas	BD,	Chan	H-P,	D’Orsi	CJ,	et	al.	Evaluating	imaging	and	computer-aided	detection	and	
diagnosis	devices	at	the	FDA.	Acad.	Radiol.	2012;19(4):463-477.	

13.	 Obuchowski	 NA,	 Beiden	 SV,	 Berbaum	 KS,	 et	 al.	Multireader,	 multicase	 receiver	 operating	
characteristic	analysis.	Acad.	Radiol.	2004;11(9):980-995.	

14.	 Hillis	 SL,	 Obuchowski	 NA,	 Berbaum	 KS.	 Power	 Estimation	 for	 Multireader	 ROC	 Methods.	
Acad.	Radiol.	2011/02/01/	2011;18(2):129-142.	

15.	 Upton	G,	Cook	I.	A	dictionary	of	statistics	3e.	Oxford	university	press;	2014.	
16.	 Mason	 SJ,	 Graham	 NE.	 Areas	 beneath	 the	 relative	 operating	 characteristics	 (ROC)	 and	

relative	operating	 levels	(ROL)	curves:	Statistical	significance	and	 interpretation.	Q.	J.	Royal	
Meteorol.	Soc.	2002;128(584):2145-2166.	

17.	 Lowe	 DG.	 Distinctive	 image	 features	 from	 scale-invariant	 keypoints.	 Int.	 J.	 Comput.	 Vis.	
2004;60(2):91-110.	

18.	 Ojala	T,	Pietikainen	M,	Maenpaa	T.	Multiresolution	gray-scale	and	rotation	invariant	texture	
classification	 with	 local	 binary	 patterns.	 IEEE	 Trans.	 Pattern	 Anal.	 Mach.	 Intell.	
2002;24(7):971-987.	

19.	 Haralick	RM,	Shanmugam	K,	Dinstein	I.	Textural	features	for	image	classification.	IEEE	Trans.	
Syst.	Man	Cybern.	1973;SMC-3(6):610-621.	

20.	 Cortes	C,	Vapnik	V.	Support-vector	networks.	Mach.	Learn.	1995;20(3):273-297.	
21.	 Breiman	L.	Random	forests.	Mach.	Learn.	2001;45(1):5-32.	
22.	 Szegedy	C,	Wei	L,	Yangqing	J,	et	al.	Going	deeper	with	convolutions.	Paper	presented	at:	IEEE	

Conference	on	Computer	Vision	and	Pattern	Recognition;	7-12	June	2015,	2015.	



		

23.	 Dorfman	 DD,	 Berbaum	 KS,	 Metz	 CE.	 Receiver	 operating	 characteristic	 rating	 analysis:	
generalization	to	the	population	of	readers	and	patients	with	the	Jackknife	method.	Invest.	
Radiol.	1992;27(9):723-731.	

24.	 He	K,	Zhang	X,	Ren	S,	Sun	J.	Deep	residual	 learning	for	 image	recognition.	Paper	presented	
at:	IEEE	Conference	on	Computer	Vision	and	Pattern	Recognition;	27-30	June	2016,	2016.	

25.	 Simonyan	 K,	 Zisserman	 A.	 Very	 deep	 convolutional	 networks	 for	 large-scale	 image	
recognition.	arXiv	preprint	arXiv:1409.1556.	2014.	

26.	 Ehteshami	Bejnordi	B,	Litjens	G,	Timofeeva	N,	et	al.	Stain	specific	standardization	of	whole-
slide	histopathological	images.	IEEE	Trans.	Med.	Imaging.	2016;35(2):404-415.	

27.	 Kendall	 A,	 Badrinarayanan	 V,	 Cipolla	 R.	 Bayesian	 segnet:	 Model	 uncertainty	 in	 deep	
convolutional	 encoder-decoder	 architectures	 for	 scene	 understanding.	 arXiv	 preprint	
arXiv:1511.02680.	2015.	

28.	 Krizhevsky	A,	Sutskever	I,	Hinton	GE.	Imagenet	classification	with	deep	convolutional	neural	
networks.	Paper	presented	at:	Advances	in	neural	information	processing	systems2012.	

29.	 Ronneberger	 O,	 Fischer	 P,	 Brox	 T.	 U-net:	 Convolutional	 networks	 for	 biomedical	 image	
segmentation.	Paper	presented	at:	 International	Conference	on	Medical	 Image	Computing	
and	Computer-Assisted	Intervention2015.	

30.	 Zheng	 S,	 Jayasumana	 S,	 Romera-Paredes	 B,	 et	 al.	 Conditional	 random	 fields	 as	 recurrent	
neural	networks.	Paper	presented	at:	Proceedings	of	 the	 IEEE	 International	Conference	on	
Computer	Vision2015.	

31.	 Viola	P,	 Jones	M.	Fast	and	 robust	 classification	using	asymmetric	adaboost	and	a	detector	
cascade.	Paper	presented	at:	Advances	in	Neural	Information	Processing	Systems2002.	

32.	 Albarqouni	S,	Baur	C,	Achilles	F,	Belagiannis	V,	Demirci	S,	Navab	N.	AggNet:	Deep	 learning	
from	 crowds	 for	 mitosis	 detection	 in	 breast	 cancer	 histology	 images.	 IEEE	 Trans.	 Med.	
Imaging.	2016;35(5):1313-1321.	

 

  



		

	

Figure	 1.	 FROC	 curves	 of	 the	 top-five	 performing	 systems	 for	 the	 metastases	 identification	 task	 (task	 1;	
measured	on	the	129	whole-slide	images	in	the	test	set	of	which	49	contain	metastatic	regions).	The	range	on	
the	x-axis	is	linear	between	0	and	0.125	and	base-2	logarithmic	scale	between	0.125	and	8.	Pathologist	WTC	
refers	 to	 the	pathologist	who	diagnosed	the	slides	without	 time	constraint.	The	pathologist	did	not	produce	
any	 false	 positives	 and	 achieved	 a	 true	 positive	 fraction	 of	 0.724	 for	 detecting	 and	 localizing	 metastatic	
regions. 

  



		

	

Figure	 2.	 Example	 probability	 maps	 generated	 by	 the	 top-three	 performing	 systems	 for	 classification	 of	
microscopic	images	of	H&E	stained	lymph	node	tissue	sections.	(a)	Four	annotated	micrometastatic	lesions	in	
the	test	set	of	CAMELYON16.	(b-d)	Probability	maps	for	teams	HMS	&	MIT	II,	HMS	&	MGH	III,	and	CULab	III,	
respectively,	overlaid	on	the	original	 images.	The	color	scale	bar	(top	right)	 indicates	the	probability	for	each	
pixel	to	be	part	of	a	metastatic	region.	See	eFigure	5	in	the	supplement	for	additional	examples.	

  



		

	

Figure	3.	ROC	curves	of	the	top-performing	systems	(measured	on	the	129	whole-slide	images	in	the	test	set	of	
which	49	 contain	metastatic	 regions)	 for	 task	 2.	 (a)	 ROC	 curves	of	 the	 top-five	performing	 systems	and	 the	
operating	points	of	the	pathologists.	A	system	achieves	superior	performance	to	a	pathologist	if	the	operating	
point	 of	 the	 pathologist	 lies	 below	 the	 system’s	 ROC	 curve.	 The	 top-two	 deep	 learning	 based	 systems	
outperform	 all	 the	 11	 pathologists	 in	 our	 study.	 Pathologist	 WTC	 refers	 to	 the	 operating	 point	 of	 the	
pathologist	who	diagnosed	the	slides	without	time	constraint.	All	the	pathologists	scored	whole-slide	images	
using	 five	 levels	 of	 confidence:	 definitely	 normal,	 probably	 normal,	 equivocal,	 probably	 tumor,	 definitely	
tumor.	 To	 generate	 estimates	 of	 sensitivity	 and	 specificity	 for	 each	 pathologist,	 negative	 was	 defined	 as	
confidence	levels	‘definitely	normal’	and	‘probably	normal’	and	all	others	as	positive.	(b)	More	detailed	view	of	
the	highlighted	area	 in	 (a).	 (c)	Comparison	of	 the	ROC	curves	of	 the	 top-two	performing	systems,	 the	mean	
ROC	 over	 the	 panel	 of	 11	 pathologists	 (denoted	 as	 Pathologist	 Avg.)	 and	 the	 pathologist	 without	 time	
constraint.	The	mean	ROC	curve	was	computed	using	the	pooled	mean	technique.	This	mean	 is	obtained	by	
joining	all	the	diagnoses	of	the	11	pathologists	and	computing	the	resulting	ROC	curve	as	if	it	were	one	person	
analyzing	11×129=1419	cases.	(d)	More	detailed	view	of	the	highlighted	area	in	(c).	

  



		

Table	1.	Summary	of	the	number	of	whole-slide	images	in	the	training	and	testing	sets	including	the	number	of	
cases	with	different	primary	tumor	Histotypes	(infiltrating	ductal	carcinoma	(IDC)	and	other	histotypes	(non-
IDC))	and	the	number	of	cases	with	different	metastases	size	(micrometastases	and	macrometastases).	The	
statistics	of	the	number	of	lesions	in	the	positive	slides	are	also	presented.	

dataset	 Hospital Histotype Metastases  number of lesions per image Total 
images IDC Non-IDC None Macro Micro median min max 

Train 
Radboudumc 54 16 100 35 35 2 1 20 170 

UMCUtrecht 30 10 60 26 14 3 1 27 100 

Test 
Radboudumc 23 6 50 14 15 2 1 14 79 

UMCUtrecht 15 5 30 8 12 3 1 25 50 

 

  



		

 

	Table	2.	Results	of	the	submitted	algorithms	on	the	CAMELYON16	test	set	for	the	metastasis	identification	and	
the	whole-slide	image	classification	tasks.	Algorithms	are	sorted	based	on	their	performance	on	the	whole-
slide	classification	task.	The	percentile	bootstrap	method	was	used	to	construct	95%	confidence	intervals	for	
FROC	true	positive	fraction	scores	(FROC	scores)	and	AUCs.	The	results	of	the	significant	test	with	MRMC	
analysis	for	the	comparison	of	each	individual	algorithm	with	the	panel	of	11	pathologist	are	provided.	The	p-
values	were	adjusted	for	multiple	comparisons	using	the	Bonferroni	correction	in	which	the	p-values	are	
multiplied	by	the	number	of	comparisons	(32;	comparison	of	the	32	submitted	algorithms	with	the	panel	of	
pathologists).	See	eTable	3	and	eMethods	in	the	supplement	for	algorithms	contact	information	and	detailed	
description	of	each	algorithm.	See	eText	in	the	supplement	for	glossary	of	deep	learning	terminology. 

	

Codename Entry 

metastasis 
identification 

Whole-slide image 
Classification 

Comparison 
to panel of 

11 
pathologists 

Approach 
Remarks FROC 

score 95% CI AUC 95% CI Deep 
learning model 

HMS & MIT II 0.807 0.732 - 0.889 0.9935 0.983 - 0.999 p<0.001 � GoogLeNet22 Ensemble of two networks, stain standardization, 
extensive data augmentation, hard negative mining 

HMS & MGH III 0.760 0.692 - 0.857 0.9763 0.941 - 0.999 p<0.001 � ResNet24 Fine-tuning pre-trained network, Fully convolutional 
network 

HMS & MGH I 0.596 0.578 - 0.734 0.9643 0.928 - 0.989 p<0.001 � GoogLeNet22 Fine-tuning pre-trained network 

CULab III III 0.703 0.605 - 0.799 0.9403 0.888 - 0.980 p<0.001 � VGG-1625 Fine-tuning pre-trained network, Fully convolutional 
network 

HMS & MIT I 0.693 0.600 – 0.819 0.9234 0.855 - 0.977 p=0.11 � GoogLeNet22 Ensemble of two networks, Hard negative mining 
ExB I 0.511 0.363 - 0.620 0.9156 0.858 - 0.962 p=0.02 � ResNet24 Varying class balance during training 
CULab I 0.544 0.467 - 0.629 0.9087 0.851 - 0.954 p=0.04 � VGG-Net25 Fine-tuning pre-trained network 
HMS & MGH II 0.729 0.596 - 0.788 0.9082 0.846 - 0.961 p=0.04 � ResNet24 Fine-tuning pre-trained network 

CULab II 0.527 0.335 - 0.627 0.9056 0.841 - 0.957 p=0.16 � VGG-Net25 & 
ResNet24 

Fine-tuning pre-trained network, Cascade a VGG-Net 
that operates on low magnification images and a 
ResNet model that refines the results. 

DeepCare I 0.243 0.197 - 0.356 0.8833 0.806 - 0.943 p>0.99 � GoogLeNet22 Fine-tuning pre-trained network 
Quincy Wong I 0.367 0.250 - 0.521 0.8654 0.789 - 0.924 p>0.99 � SegNet27 Fine-tuning pre-trained network 
METU I 0.389 0.272 - 0.512 0.8642 0.786 - 0.927 p>0.99 � 4-layer CNN Custom confidence filtering for post-processing 

NLP LOGIX I 0.386 0.255 - 0.511 0.8298 0.742 - 0.899 p>0.99 � AlexNet28 Using a second stage random forest classifier to 
generate slide scores 

Smart Imaging II 0.339 0.239 - 0.420 0.8208 0.753 - 0.894 p>0.99 � GoogLeNet22 Uses ensemble of the output from the team’s first 
entry and GoogLeNet model 

U of Toronto I 0.382 0.286 - 0.515 0.8149 0.722 - 0.886 p>0.99 � VGG-Net25 Combining the output of multiple CNNs trained on 
different magnifications by computing their mean 

Warwick-QU I 0.305 0.219 - 0.397 0.7958 0.711 - 0.871 p>0.99 � U-Net29 Use of stain normalization 

Radboudumc I 0.575 0.446 - 0.659 0.7786 0.694 - 0.860 p>0.99 � VGG-Net25 Extensive data augmentation, second stage CNN to 
generate slide level scores 

HTW-Berlin I 0.187 0.112 - 0.250 0.7676 0.665 - 0.853 p>0.99 � CRFasRNN30 Fine-tuning pre-trained network 

U of Toronto II 0.352 0.292 - 0.511 0.7621 0.659 - 0.846 p>0.99 � VGG-Net25 Combining the output of multiple CNNs trained on 
different magnifications by using an additional CNN 

Tampere I 0.257 0.171 - 0.376 0.7612 0.662 - 0.837 p>0.99 � Random 
Forests21 Using a large set of intensity and texture features 

Smart Imaging I 0.208 0.119 - 0.306 0.7574 0.663 - 0.839 p>0.99 � SVM20 & 
Adaboost31 

Cascade of SVM and Adaboost classifiers using 
texture features 

Osaka University I 0.347 0.234 - 0.463 0.7319 0.629 - 0.824 p>0.99 � GoogLeNet22  
CAMP-TUM II 0.273 0.194 - 0.379 0.7316 0.633 - 0.819 p>0.99 � GoogLeNet22 Hard negative mining 

USF I 0.179 0.116 - 0.242 0.7270 0.611 - 0.823 p>0.99 � Random 
Forests21 Using various intensity and texture features 

NSS I 0.165 0.116 - 0.195 0.7269 0.635 - 0.81 p>0.99 � Rule-based Multiple thresholds on several nucleus based features 

Tampere II 0.252 0.149 - 0.350 0.7133 0.612 - 0.801 p>0.99 � 7-layer CNN Self-designed network architecture 
CAMP-TUM I 0.184 0.127 - 0.243 0.6911 0.580 - 0.787 p>0.99 � Agg-Net32 Multi-scale approach for analyzing the images 

Minsk Team I 0.227 0.181 - 0.264 0.6890 0.568 - 0.804 p>0.99 � GoogLeNet22 Separate models for different datasets, Hard negative 
mining  

VISILAB I 0.142 0.080 - 0.203 0.6532 0.551 - 0.748 p>0.99 � Random 
Forests21 Using Haralick texture features19 

VISILAB II 0.116 0.063 - 0.177 0.6513 0.549 - 0.742 p>0.99 � 3-layer CNN Self-designed network architecture 

Anonymous I 0.097 0.049 - 0.158 0.6277 0.530 - 0.717 p>0.99 � Random 
Forests21  

LIB I 0.120 0.079 - 0.182 0.5561 0.434 - 0.654 p>0.99 � SVM20 Using various color and texture features 
Pathologist WTC  0.724 0.643 - 0.804 0.966 0.927 - 0.998 — — — The expert pathologist who scored without time a limit 

Mean pathologist  — — 0.810 0.750 – 0.869 — — — 
The mean performance of 11 pathologists in a 
simulation exercise designed to mimic the routine 
workflow of diagnostic pathology 
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eText 

Deep Learning.  

Application of traditional machine learning to medical image analysis typically involved human engineers 

collaborating with physicians to decide what kind of features are needed to recognize lesions or objects of interest in 

the images. These features were then extracted from medical images and fed to an algorithm which would assess 

whether the lesion or object was present in the image. Deep learning changes this in two important ways. The first 

refers to the ‘deep’ part in deep learning; whereas the traditional approach typically consisted of two steps, a deep 

network consists of many steps, or in deep learning terminology, layers. Each of these layers can perform feature 

extraction or classification, and because one layer feeds output into the next, features can hierarchically become 

more complex. The first layers, for example, can identify edges or circles and subsequent layers can combine these 

into more meaningful objects, eventually leading to complex structures such as faces in natural images. The second 

major difference with traditional machine learning is that features are no longer manually engineered, but learned 

automatically by the system. This is done by optimizing deep learning algorithms end-to-end, i.e. given an input, 

optimize the parameters across layers in such a way that the desired output is most likely. Typically this is done with 

an algorithm called backpropagation. 

Most deep learning algorithms are based on artificial neural networks that are mathematical constructs that stack 

together ‘nodes’. Nodes consist of simple multiplications and additions, combined with a non-linear transform and 

multiple nodes form a layer. By selecting how nodes between different layers are connected one can determine how 

features are extracted. Currently the most popular deep learning algorithm is the convolutional neural network 

(CNN). In a CNN nodes are connected in such a way that they model a convolution operation, which allows 

recognition of a single feature (a convolutional filter) across the entire image, making CNNs highly efficient for 

image processing. CNNs have revolutionized the field of computer visions, breaking records and attaining results 

that have eluded the community for years1-4. 

  



Glossary of deep learning and digital pathology terminology. 

Model fine-tuning – using the weights of a model that was trained for one task as an initialization for training a 

model for a different task.  

Model ensembling – combining the output from different models (e.g. by averaging the predictions) with the goal of 

improving the overall performance. 

Hard-negative mining – discovering negative samples (in a detection problem) that are non-trivial to distinguish 

from positive samples. 

Data augmentation – applying transformation to the training samples that create new, plausible training samples 

with the goal of increasing the training set size. 

Staining normalization – modifying the color appearance of whole slide images such that it resembles some 

reference sample with the goal of reducing the appearance variability within a dataset. 

Fully convolutional network – neural network consisting only of convolutional layers, or more generally, consisting 

only of layers that produce outputs for arbitrary input sizes (this enables a model to be trained on small images and 

then applied to larger images such as whole slide images). 

AlexNet1 – neural network architecture that was the winner of the ImageNet Large Scale Visual Recognition 

Challenge 2012 for the object detection, localization and classification tasks5. 

GoogLeNet3 – neural network architecture that was the winner of the ImageNet Large Scale Visual Recognition 

Challenge 2014 for the object detection and classification tasks5. 

VGG-net6 – neural network architecture that was the winner of the  ImageNet Large Scale Visual Recognition 

Challenge 2014 for the localization task5. 

ResNet4 – neural network architecture that was the winner of the ImageNet Large Scale Visual Recognition 

Challenge 2015 for the object detection, localization and classification tasks4,5. 

U-Net7 and SegNet8 – neural network architectures that were specifically designed for segmentation of biomedical 

images. 



eFigure 1. Two example annotated areas of whole-slide images taken from the 
CAMELYON16 dataset 

	

eFigure 1. Two example annotated areas of whole-slide images of hematoxylin and eosin stained lymph node tissue sections taken from the 
CAMELYON16 dataset. (a) and (c) show overviews of two examples of whole-slide images. (b) and (d) are magnified images, corresponding to 
rectangle areas in (a) and (c), with detailed annotation of metastatic regions.  

	 	



eFigure 2. Use of immunohistochemistry staining to generate reference standard 

	

eFigure 2. Side by side visualization of hematoxylin and eosin (H&E) and	 immunohistochemistry (IHC) staining for generating reference 
standard. (a) and (c) show two example annotations made for two H&E stained images. (b) and (d) show corresponding tissue areas in (a) and (c), 
stained with IHC. Note that IHC was only used for generating the reference standard in our challenge. Neither of the pathologists in our observer 
study nor participants of the challenge had access to this data. Immunohistochemical staining was performed with anti-CK8/18 (anti-cytokeratin 
mouse monoclonal antibody, clone CAM 5.2, BD Biociences, San Jose, USA). Binding of the antibody was visualized with a Brightvision® 
Poly-HRP-Anti Ms/Rb/Rt IgG biotin free detection system using BrightDAB® (Immunologic, Duiven, the Netherlands) as peroxidase-
compatible chromogen and hematoxylin counterstaining. 

  



eFigure 3. ROC curves of	the panel of the 11 pathologists for task 2 
 

	

eFigure 3. ROC curves of the panel of 11 pathologists and their corresponding AUCs for task 2 (measured on the 129 whole-slide images in the 
test set of which 49 contain metastatic regions). All the pathologists scored whole-slide images using five levels of confidence: definitely normal, 
probably normal, equivocal, not confident, probably tumor, definitely tumor. To ease comparison, the ROC curve of the pathologist without time 
constraint (pathologist WTC) is shown in all subfigures. 

  



eFigure 4. FROC curves of all participating teams for task 1 

	

eFigure 4. FROC curves of all the 32 participating teams and their corresponding FROC true positive fraction scores for task 1 (measured on the 
129 whole-slide images in the test set of which 49 contain metastatic regions). The operating point of the pathologist who scored the slides 
without time constraint (WTC) is shown as a green diamond. The range on the x-axis is linear between 0 and 0.125 and base-2 logarithmic scale 
between 0.125 and 8. The pathologist did not produce any false positives and achieved a true positive fraction of 0.724 for detecting and 
localizing metastatic regions. To ease comparison, the FROC curve of the best-performing system (HMS & MIT II) is shown in all subfigures. 



eFigure 5. Example probability maps generated by the top-three performing systems         

 

eFigure 5. Example probability maps generated by the top-three performing systems. (a) Four annotated metastatic lesions in the test set of 
CAMELYON16. (b-d) Probability maps for teams HMS & MIT II, HMS & MGH III, and CULab III, respectively, overlaid on the original 
images.  



eFigure 6. ROC curves of all participating teams for task 2 

	

eFigure 6. ROC curves of all the 32 participating teams and their corresponding AUCs for task 2 (measured on the 129 whole-slide images in the 
test set of which 49 contain metastatic regions). The operating point of the pathologist who scored the slides without time constraint (WTC) and 
the operating point of the mean of the panel of 11 pathologists are shown as green diamond and red circle, respectively. To ease comparison, 
ROC curve of the best-performing system (HMS & MIT II) is shown in all subfigures. 

	 	



eTable1. Classification results by pathologists for the whole-slide image classification 
task (sensitivity and specificity) 
eTable1. Classification results by the panel of 11 pathologists participating in the simulation exercise and the expert pathologist whiteout time 
constraint (WTC) on the CAMELYON16 test set for the whole-slide image classification task (task 2). The performances are measured in 129 
whole-slide images in the test set of which 49 contain metastatic regions (comprising of 22 macro and 27 micrometastases, and 38 with primary 
tumor histotype of infiltrating ductal cancer (IDC) and 11 non-IDC). We report sensitivity and specificity for different scenarios: 1) 
differentiating all tumor slides from normal slides, 2) differentiating slides with macrometastases from normal slides while excluding 
micrometastases, 3) differentiating slides with micrometastases from normal slides while excluding macrometastases, 4) differentiating slides 
with primary tumor histotype of IDC from normal slides while excluding the rarer primary tumor histotypes (non-IDC), and 5) differentiating 
slides with non-IDC primary histotypes from normal slides while excluding slides with primary tumor histotype of IDC. 

Codename 
All cases 

Metastases Histotype 

Macrometastases Micrometastases IDC Non-IDC 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Pathologist 1 0.612 1 0.954 1 0.333 1 0.647 1 0.533 1 

Pathologist 2 0.510 0.987 0.909 0.987 0.185 0.987 0.588 0.987 0.333 0.987 

Pathologist 3 0.632 1 0.954 1 0.370 1 0.735 1 0.4 1 

Pathologist 4 0.653 0.987 0.954 0.987 0.407 0.987 0.705 0.987 0.533 0.987 

Pathologist 5 0.755 0.987 1 0.987 0.555 0.987 0.764 0.987 0.733 0.987 

Pathologist 6 0.571 0.975 0.818 0.975 0.370 0.975 0.676 0.975 0.333 0.975 

Pathologist 7 0.469 0.975 0.863 0.975 0.148 0.975 0.529 0.975 0.333 0.975 

Pathologist 8 0.632 0.975 0.954 0.975 0.370 0.975 0.705 0.975 0.466 0.975 

Pathologist 9 0.571 0.987 0.909 0.987 0.296 0.987 0.617 0.987 0.466 0.987 

Pathologist 10 0.734 0.962 0.954 0.962 0.555 0.962 0.794 0.962 0.6 0.962 

Pathologist 11 0.775 1 0.954 1 0.629 1 0.850 1 0.6 1 

Mean  pathologist 0.628 0.985 0.929 0.985 0.383 0.985 0.692 0.985 0.484 0.985 

Pathologist WTC 0.938 0.987 1 0.987 0.888 0.9875 0.970 0.987 0.866 0.987 

	

  



eTable2. Classification results by pathologists for the whole-slide image classification 
task (area under the ROC curve) 
eTable2. Classification results by the panel of 11 pathologists participating in the simulation exercise and the expert pathologist without time 
constraint (WTC) on the CAMELYON16 test set for the whole-slide image classification task (task 2). The performances are measured in 129 
whole-slide images in the test set of which 49 contain metastatic regions (comprising of 22 macro and 27 micrometastases, and 38 with primary 
tumor histotype of infiltrating ductal cancer (IDC) and 11 non-IDC). We report classification AUC for different scenarios: 1) differentiating all 
tumor slides from normal slides, 2) differentiating slides with macrometastases from normal slides while excluding micrometastases, 3) 
differentiating slides with micrometastases from normal slides while excluding macrometastases, 4) differentiating slides with primary tumor 
histotype of IDC from normal slides while excluding the rarer primary tumor histotypes (non-IDC), and 5) differentiating slides with non-IDC 
primary histotypes from normal slides while excluding slides with primary tumor histotype of IDC. We used percentile bootstrapping to construct 
95% confidence interval.	The results of the significance test for comparison of the performance of each pathologist for the detection of micro and 
macrometastases as well as for comparison of the performance for the detection of IDC and non-IDC metastases are presented (see the statistical 
analysis section).	The p-values were adjusted for multiple comparisons using the Bonferroni correction. 

Codename 
All cases 

Metastases Histotype 

Macrometastases Micrometastases Comparison 
of detection 
performance 

IDC Non-IDC Comparison 
of detection 
performance AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI 

Pathologist 1 0.809 0.732-0.876 0.976 0.918-1.0 0.673 0.577-0.777 p<0.001 0.817 0.729-0.899 0.791 0.665-0.916 p>0.99 

Pathologist 2 0.756 0.679-0.82 0.948 0.874-1.0 0.599 0.510-0.672 p<0.001 0.785 0.696-0.858 0.689 0.569-0.831 p>0.99 

Pathologist 3 0.807 0.738-0.876 0.976 0.916-1.0 0.669 0.562-0.757 p<0.001 0.861 0.779-0.937 0.685 0.566-0.825 p=0.34 

Pathologist 4 0.820 0.744-0.885 0.976 0.915-1.0 0.692 0.590-0.787 p<0.001 0.847 0.762-0.922 0.758 0.623-0.891 p>0.99 

Pathologist 5 0.873 0.802-0.926 1.0 1.0-1.0 0.769 0.659-0.859 p=0.01 0.878 0.797-0.949 0.862 0.737-0.969 p>0.99 

Pathologist 6 0.786 0.711-0.854 0.924 0.838-0.993 0.674 0.577-0.76 p=0.03 0.844 0.758-0.921 0.656 0.543-0.778 p=0.15 

Pathologist 7 0.738 0.663-0.805 0.930 0.843-1.0 0.582 0.502-0.65 p<0.001 0.773 0.683-0.854 0.658 0.548-0.791 p>0.99 

Pathologist 8 0.796 0.715-0.866 0.969 0.904-1.0 0.654 0.549-0.739 p<0.001 0.835 0.743-0.91 0.707 0.576-0.854 p>0.99 

Pathologist 9 0.779 0.707-0.845 0.948 0.869-1.0 0.642 0.545-0.72 p<0.001 0.803 0.710-0.884 0.727 0.599-0.857 p>0.99 

Pathologist 10 0.862 0.796-0.927 0.976 0.917-1.0 0.769 0.651-0.859 p=0.01 0.893 0.815-0.957 0.793 0.670-0.919 p>0.99 

Pathologist 11 0.884 0.816-0.941 0.976 0.917-1.0 0.808 0.704-0.908 p=0.03 0.924 0.845-0.983 0.793 0.660-0.919 p=0.25 

Mean  pathologist 0.810 0.750-0.869 0.964 0.930-0.997 0.685 0.619-0.746 — 0.842 0.775-0.907 0.738 0.630-0.846 — 

Pathologist WTC 0.966 0.927-0.998 0.994 0.977-1.0 0.943 0.868-0.995 p=0.87 0.976 0.932-1.0 0.943 0.848-1.0 p>0.99 

 

  



eTable3. Participating teams in CAMELYON16 
eTable3. Teams participating in CAMELYON16. Each method is identified with a codename used in the text. See eMethods for details about 
each method. 

Codename	 Contributors	 Institutions	 Training	Model	

HMS	&	MIT	(I	&	II)	
Dayong	Wang,	Aditya	Khosla,	Rishab	Gargeya,	Humayun	
Irshad,	Andrew	H	Beck	

Harvard	Medical	School	and	
Massachusetts	institute	of	Technology	

(Models	I	&	II)	
22	layer	GoogLeNet3	

HMS	&	MGH		
(I,	II	&	III)	

Aoxiao	Zhong,	Quanzheng	Li	
Harvard	Medical	School	and	
Massachusetts	General	Hospital	

(Model	I)	22	layer	GoogLeNet3,		
(Model	II)	101	ResNet4	
(Model	III)	101	fully	convolutional	
ResNet4	

ExB	
Christian	Hass,	Urko	Sanchez,	Ivan	Vasilev,	Tony	Mey,	
and	Elia	Bruni	

ExB	Research	and	Development	GmbH	 34	layer	ResNet4	

CULab	(I,	II	&	III)	 Hao	Chen,	Huang-Jing	Lin,	Qi	Dou,	and	Pheng-Ann	Heng	 The	Chinese	Univ.	of	Hong	Kong	

(Model	I)	VGG-166,		
(Model	II)	cascade	of	VGG-166	and	
ResNet4-152	
(Model	III)	VGG-166	

Quincy	Wong	 Quincy	Wong	 Independent	participant	 37	layer	SegNet8	

METU	
Ugur	HALICI,	Mustafa	Ümit	ÖNER,	and	Rengül	Çetin	
Atalay	

Middle	East	Technical	Univ.	 4	layer	CNN	

NLP	LOGIX	 Matt	Berseth	 NLP	LOGIX	 7	layer	AlexNet1	

Smart	Imaging		
(I	&	II)	

Vitali	Khvatkov,	Alexei	Vylegzhanin	 Smart	Imaging	Technologies	Co.	
(Model	I)	SVM9	and	Adaboost10,	
(Model	II)	Combination	of	model	I	
and	a	22	layer	GoogLeNet3	

U	of	Toronto	(I	&	II)	 Oren	Kraus	 Univ.	of	Toronto	
(Models	I	&	II)	
10	layer	VGG-like6	network	

Warwick-QU	
Muhammad	Shaban,	Talha	Qaiser,	Ruqayya	Awan,	
Korsuk	Sirinukunwattana,	Yee-Wah	Tsang,	and	Nasir	
Rajpoot	

University	of	Warwick	 15	layer	U-Net7	

Radboudumc	 David	Tellez	 Radboud	Univ.	Medical	Center	 VGG-136	

HTW-Berlin	 Jonas	Annuscheit,	Peter	Hufnagl	 HTW-BERLIN	 CRFasRNN11	

Tampere	I	
Mira	Valkonen,	Kimmo	Kartasalo,	Kaisa	Liimatainen,	
Leena	Latonen,	Pekka	Ruusuvuori	

Univ.	of	Tampere	 Random	Forests12	

Osaka	University	
Seiryo	Watanabe	,	Shigeto	Seno,	Yoichi	Takenaka,	Hideo	
Matsuda	

Osaka	Univ.	 22	layer	GoogLeNet3	

USF	 Hady	Ahmady	Phoulady	 Univ.	of	South	Florida	 Random	Forests12	

NSS	
Nandakumar	P,	Sarath	PC,	Vishnu	Prasad	M,	
Yadukrishnan	M,	and	Sreejith	Valsan	M	

NSS	college	of	Engineering	 Multiple	thresholds		

Tampere	II	
Kaisa	Liimatainen,	Kimmo	Kartasalo,	Mira	Valkonen,	
Leena	Latonen,	Pekka	Ruusuvuori	

Univ.	of	Tampere	 7	layer	CNN	

CAMP-TUM	(I	&	II)	
Bharti	Munjal,	Amil	George,	Shadi	Albarqouni,	Stefanie	
Demirci,	Nassir	Navab	

Technical	Univ.	of	Munich	
(Model	I)	5	layer	Agg-Net13,		
(Model	II)	22	layer	GoogLeNet3	

Minsk	Team	
Vassili	Kovalev,	Alexander	Kalinovsky,	and	Vitali	
Liauchuk	

United	Institute	of	Informatics	
Problems	

22	layer	GoogLeNet3	

VISILAB	(I	&	II)	
M.	Milagro	Fernandez-Carrobles,	Ismael	Serrano,	Oscar	
Deniz,	Gloria	Bueno	

Univ.	of	Castilla-La	Mancha	
(Model	I)	Random	Forests12,		
(Model	II)	3	layer	CNN	

Anonymous	 Anonymous	 Anonymous	 Random	Forests12	

LIB	 R.	Venâncio,	B.	Ben	Cheikh,	A.	Coron,	and	D.	Racoceanu	 Sorbonne	Univ.	 SVM9	

DeepCare	 Tong	Xu	 DeepCare	Inc.	 22	layer	GoogLeNet3	

 

  



eTable4. Summary of results for the metastasis identification task (task1) 
eTable4. Results of the submitted algorithms on the CAMELYON16 test set for the metastasis identification task. We report the overall FROC 
scores and the true positive fraction at several values for the mean number of false positives per whole-slide image (FPs/WSI). The final FROC 
true positive fraction score (FROC score) that ranked teams in the this task was defined as the mean true positive fraction at 6 predefined false 
positive rates: 1/4, 1/2, 1, 2, 4, and 8 FPs per whole-slide image. Note that the pathologist scoring without time constraint had an overall true 
positive fraction of 72.4% without any false positives.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Codename FROC score 
True positive fraction at the different false positive values 

! ! FPs/WSI ! ! FPs/WSI 1  FPs/WSI 2  FPs/WSI 4  FPs/WSI 8  FPs/WSI 

HMS & MIT II 0.807 0.773 0.778 0.813 0.827 0.827 0.827 

HMS & MGH III 0.760 0.667 0.707 0.747 0.791 0.818 0.831 

HMS & MGH II 0.729 0.729 0.729 0.729 0.729 0.729 0.729 

CULab III 0.703 0.591 0.640 0.680 0.733 0.769 0.804 

HMS & MIT I 0.693 0.596 0.649 0.693 0.738 0.742 0.742 

HMS & MGH I 0.596 0.556 0.587 0.609 0.609 0.609 0.609 

RadboudUMC 0.575 0.493 0.524 0.569 0.600 0.631 0.631 

CULab I 0.544 0.404 0.471 0.493 0.582 0.631 0.684 

CULab II 0.527 0.440 0.476 0.524 0.560 0.582 0.582 

ExB 0.511 0.458 0.507 0.516 0.520 0.533 0.533 

METU 0.389 0.307 0.333 0.373 0.400 0.444 0.476 

NLP LOGIX 0.386 0.307 0.338 0.364 0.387 0.418 0.502 

U of Toronto I 0.382 0.244 0.293 0.351 0.409 0.467 0.529 

Quincy Wong 0.367 0.333 0.351 0.360 0.378 0.382 0.396 

U of Toronto II 0.352 0.222 0.262 0.324 0.391 0.436 0.476 

Osaka University 0.347 0.289 0.311 0.329 0.356 0.382 0.413 

Smart Imaging II 0.339 0.289 0.338 0.351 0.351 0.351 0.351 

Warwick-QU 0.305 0.262 0.307 0.316 0.316 0.316 0.316 

CAMP-TUM II 0.273 0.213 0.240 0.258 0.276 0.298 0.356 

Tampere I 0.257 0.178 0.196 0.227 0.267 0.311 0.364 

Tampere II 0.252 0.200 0.204 0.240 0.267 0.289 0.311 

DeepCare 0.243 0.000 0.000 0.364 0.364 0.364 0.364 

Minsk Team 0.227 0.178 0.196 0.227 0.253 0.253 0.253 

Smart Imaging I 0.208 0.160 0.169 0.191 0.222 0.240 0.267 

HTW-Berlin 0.187 0.187 0.187 0.187 0.187 0.187 0.187 

CAMP-TUM I 0.184 0.133 0.151 0.173 0.200 0.213 0.231 

USF 0.179 0.151 0.151 0.156 0.182 0.204 0.231 

NSS 0.165 0.160 0.160 0.164 0.169 0.169 0.169 

VISILAB I 0.142 0.062 0.084 0.093 0.142 0.227 0.244 

LIB 0.120 0.031 0.044 0.071 0.133 0.191 0.249 

VISILAB II 0.116 0.058 0.080 0.089 0.111 0.178 0.182 

Anonymous 0.097 0.031 0.058 0.071 0.098 0.142 0.182 



eTable5. Summary of results for the whole-slide image classification task (task2) 
eTable 5. Results of the submitted algorithms on the CAMELYON16 test set for the whole-slide image classification task. We report 
classification AUC for different scenarios: 1) differentiating all tumor slides from normal slides, 2) differentiating slides with macrometastases 
from normal slides while excluding micrometastases, 3) differentiating slides with micrometastases from normal slides while excluding 
macrometastases, 4) differentiating slides with primary tumor histotype of infiltrating ductal cancer (IDC) from normal slides while excluding the 
rarer primary tumor histotypes (non-IDC), and 5) differentiating slides with non-IDC primary histotypes from normal slides while excluding 
slides with primary tumor histotype of IDC.	

	

  

Codename 
All cases Macrometastases Micrometastases IDC Non-IDC 

AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI 

HMS & MIT II 0.9935 0.983-0.999 0.9905 0.973-1.0 0.9972 0.989-1.0 0.9926 0.979-1.0 0.9954 0.983-1.0 

HMS & MGH III 0.9763 0.941-0.999 1.0 1.0-1.0 0.9569 0.893 – 0.999 0.9785 0.928-1.0 0.9712 0.920-1.0 

HMS & MGH I 0.9643 0.928-0.989 0.9932 0.983-1.0 0.9407 0.876-0.987 0.9724 0.946-0.993 0.9458 0.857-0.997 

CULab III 0.9403 0.888-0.980 0.9875 0.961-1.0 0.9019 0.812-0.962 0.9529 0.909-0.983 0.9117 0.785-0.991 

HMS & MIT I 0.9234 0.855-0.977 0.9596 0.862-1.0 0.8939 0.794-0.971 0.9055 0.807-0.978 0.9642 0.915-0.996 

ExB 0.9156 0.858-0.962 0.9948 0.985-1.0 0.8509 0.749-0.932 0.9276 0.855-0.981 0.8883 0.777-0.973 

CULab I 0.9087 0.851-0.954 0.9966 0.989-1.0 0.8370 0.742-0.913 0.9290 0.868-0.974 0.8625 0.750-0.960 

HMS & MGH II 0.9082 0.846-0.961 1.0 1.0-1.0 0.8333 0.738-0.917 0.9118 0.833-0.968 0.90 0.795-1.0 

CULab II 0.9056 0.841-0.957 0.9926 0.972-1.0 0.8347 0.722-0.925 0.9311 0.852-0.983 0.8479 0.720-0.953 

DeepCare 0.8833 0.806-0.943 0.9705 0.903-1.0 0.8123 0.704-0.895 0.8932 0.808-0.954 0.8608 0.756-0.973 

Quincy Wong 0.8654 0.789-0.924 0.9821 0.952-1.0 0.7703 0.634-0.874 0.8888 0.805-0.953 0.8125 0.657-0.940 

METU 0.8642 0.786-0.927 0.9897 0.982-1.0 0.7618 0.630-0.867 0.8877 0.802-0.958 0.8108 0.655-0.941 

NLP LOGIX 0.8298 0.742-0.899 0.9863 0.951-1.0 0.7023 0.564-0.812 0.8838 0.796-0.947 0.7075 0.538-0.864 

Smart Imaging II 0.8208 0.753-0.894 0.9818 0.962-0.997 0.6895 0.566-0.791 0.8289 0.732-0.913 0.8025 0.664-0.917 

U of Toronto I 0.8149 0.722-0.886 0.9514 0.866-0.996 0.7037 0.563-0.804 0.8673 0.779-0.931 0.6963 0.517-0.846 

Warwick-QU 0.7958 0.711-0.871 0.9909 0.971-1.0 0.6368 0.513-0.733 0.8393 0.742-0.915 0.6971 0.547-0.836 

Radboudumc 0.7786 0.694-0.860 0.9318 0.866-0.992 0.6537 0.536-0.779 0.7923 0.690-0.89 0.7475 0.591-0.88 

HTW-Berlin 0.7676 0.665-0.853 0.9591 0.872-0.999 0.6115 0.459-0.736 0.7610 0.617-0.872 0.7825 0.627-0.911 

U of Toronto II 0.7621 0.659-0.846 0.9698 0.923-0.996 0.5928 0.442-0.71 0.8294 0.719-0.91 0.6096 0.394-0.805 

Tampere I 0.7612 0.662-0.837 0.9687 0.926-0.994 0.5921 0.472-0.703 0.7772 0.647-0.875 0.7250 0.589-0.843 

Smart Imaging I 0.7574 0.663-0.839 0.9386 0.880-0.977 0.6097 0.473-0.719 0.7706 0.639-0.860 0.7275 0.597-0.845 

Osaka University 0.7319 0.629-0.824 0.9852 0.964-0.998 0.5254 0.361-0.662 0.8051 0.686-0.899 0.5658 0.364-0.762 

CAMP-TUM II 0.7316 0.633-0.819 0.9585 0.906-0.995 0.5468 0.409-0.660 0.7596 0.640-0.855 0.6683 0.485-0.827 

USF 0.7270 0.611-0.823 0.9380 0.840-0.995 0.5551 0.401-0.674 0.7706 0.636-0.869 0.6283 0.427-0.820 

NSS 0.7269 0.635-0.81 0.8562 0.756-0.928 0.6215 0.511-0.749 0.7925 0.686-0.877 0.6783 0.430-0.739 

Tampere II 0.7133 0.612-0.801 0.8909 0.782-0.964 0.5685 0.427-0.67 0.7765 0.669-0.861 0.5700 0.398-0.734 

CAMP-TUM I 0.6911 0.580-0.787 0.8863 0.779-0.959 0.5319 0.407-0.67 0.7540 0.649-0.846 0.5483 0.364-0.742 

Minsk Team 0.6890 0.568-0.804 0.7693 0.568-0.804 0.6236 0.507-0.783 0.7423 0.604-0.855 0.5683 0.348-0.768 

VISILAB I 0.6532 0.551-0.748 0.7756 0.671-0.878 0.5535 0.412-0.673 0.6807 0.572-0.775 0.5908 0.428-0.776 

VISILAB II 0.6513 0.549-0.742 0.7696 0.662-0.873 0.5549 0.413-0.674 0.6765 0.564-0.766 0.5942 0.432-0.779 

Anonymous 0.6277 0.530-0.717 0.7420 0.629-0.838 0.5344 0.421-0.631 0.6364 0.531-0.734 0.6079 0.472-0.732 

LIB 0.5561 0.434-0.654 0.8153 0.687-0.91 0.3449 0.219-0.49 0.6051 0.467-0.724 0.4450 0.258-0.650 



 

eMethods 

CAMELYON16 evaluation metrics.  

In the lesion-based evaluation, a lesion was deemed to be identified if the location of the identified region was 

within the annotated reference standard lesion. If there were multiple findings for a single reference standard region, 

only the detection with the highest likelihood was considered while the lower likelihood findings were not 

considered false positives. All detections that were not within a specific distance (75 µm) from the reference 

standard annotations were counted as false positives. 

In practice, there can be multiple small tumor regions that lie in the proximity of each other. Pathologists, however, 

consider all of these clusters as a single region. Therefore, it is important to consider them as a single lesion for the 

evaluation. We followed the guideline described by Cserni et al.14 for merging these regions. Regions that were two 

or five cells apart (~75µm) were considered as a single entity. Subsequently, we used the following steps to obtain 

the evaluation masks: (1) Applying distance transform on the inverse binary mask of reference standard, (2) 

Thresholding the distance transformed image (T=154), (3) Labeling the connected components in the binary image. 

The resulting evaluation mask was a labeled image in which different tumor regions received different unique labels. 

This evaluation mask was used for the computation of the FROC curve. 

Method descriptions. 

This section contains the descriptions of all methods that were submitted to the CAMELYON16 challenge, 

excluding two teams (Anonymous and NSS) that did not submit sufficient details to be included in this section (The 

scores and ranking of all teams including these two teams are provided in Table 2. For brevity and improved 

readability, each method is presented in a standardized and formatted fashion. All methods follow a similar 

workflow: 1) The whole-slide images are preprocessed, 2) A machine learning model for detection of tumor regions 

is trained, 3) The machine learning model is used to produce a tumor probability map for the slide and 4) The 

probability map is post-processed to produce tumor lesion locations and scores, and a score for the entire slide. This 

general workflow is reflected in the structure of the method description. The Introduction section highlights key 

aspects of the method. The Preprocessing section contains the description of the steps that were taken to separate 

the tissue regions in the slides from the non-relevant background and standardize the tissue appearance (e.g. by 



performing staining normalization). The Deep learning framework section, which is relevant only for methods that 

use deep learning as the underlying methodology, contains details regarding the neural network architecture, data 

sampling policy and optimization procedure that was used to train the models. The methods that are based on 

conventional machine learning approaches have an analogous Classification framework section that describes the 

classification and feature extraction techniques that were used. The Metastasis identification task section describes 

the steps that were taken to compute the locations of the lesions in the whole-slide images along with corresponding 

probability scores. Finally, the Whole-slide image classification task section describes the steps that were taken to 

compute the probability score for the whole-slide image. 

	  



METHOD 1 
Team name: Minsk Team 

Authors: Vassili Kovalev, Alexander Kalinovsky, and Vitali Liauchuk 

Affiliation: Department of Biomedical Image Analysis, United Institute of Informatics Problems, Belarus National 
Academy of Sciences, Surganova St., 6, 220012 Minsk, Belarus 

Email: vassili.kovalev@gmail.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: two separate CNNs for 
different scanner types and two iterations of hard-negative mining. 

Preprocessing 

• Tissue detection: Color thresholding and morphological operations 
• Preprocessing magnification: Image level 7 (pixel size = 31.1×31.1 µm2) 
• Staining normalization: None, separate systems were trained for images from different labs 

Deep learning framework 

Architecture:  

• 22-layer GoogLeNet3 

Patch sampling: 

• Patch size: 256×256 
• Level: 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: 150,000 positive and 150,000 negative 
• Patch sampling strategy: Two iterations of hard-negative mining were performed. The training set was 

expanded with patches from regions of non-tumor tissue that the system was initially misclassifying as 
metastasis. 

• Data augmentation: None 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Random sampling from a uniform distribution 
• Batch size: 32 
• Batch normalization15: Yes 
• Regularization: 50% dropout16 in final layers 
• Learning rate: Initialized at 0.01 and decreased to 1.0e-5 with exponential decay 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 280,000 iterations 

Metastasis identification task 

1. The probability map, generated at level 7, was thresholded at 0.99 and post-processed with morphological 
filtering. 

2. Connected components were extracted. 
3. Components smaller than 5 pixels were removed. 
4. The morphological skeletons of the remaining connected components were extracted. 



5. The center of gravity of the component was calculated. 
6. The point on the skeleton closest to the center of gravity was selected as the lesion coordinate. 
7. The lesion score was calculated as: min( region size

30
, 1). 

Whole-slide image classification task 

A histogram of the probability map was calculated. Subsequently, a logistic regression model was trained to map 
this histogram to a probability value for the entire image. 

Results 

This method achieved an FROC true positive fraction score of 0.227 for task 1 and an AUC of 0.689 (95% CI, 0.568 
- 0.804) for task 2. The method ranked 23rd and 28th in the first and the second leaderboards, respectively. 

  



METHOD 2 
Team name: Radboudumc 

Authors: David Tellez 

Affiliation: Radboud University Medical Center Nijmegen, Geert Grootteplein-Zuid 10, 6525GA Nijmegen, The 
Netherlands 

Email: David.TellezMartin@radboudumc.nl 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: augmentation with 
Gaussian blurring and mapping of the tumor probability maps to slide level scores with a second-stage CNN model. 

Preprocessing 

• Tissue detection: Color thresholding 
• Preprocessing magnification: Image level 2 (pixel size = 0.97×0.97 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 15-layer VGG-like6 network 

Patch sampling: 

• Patch size: 256×256 
• Level: 2 (pixel size = 0.97×0.97 µm2) 
• Number of training samples: 150,000 positive and 150,000 negative 
• Patch sampling strategy: Patches were sampled uniformly from positive and negative regions. Normal 

patches were sampled from negative slides as well as non-metastatic regions in tumor slides. 
• Data augmentation: Rotation, vertical and horizontal mirroring and random Gaussian blurring 

Parameters: 

• Optimization method: ADAM18 
• Weight initialization: Xavier’s method19 
• Batch size: 16 
• Batch normalization15: Yes 
• Regularization: L2-regularization (1.0e-6) and 50% dropout16 
• Learning rate: Exponential learning rate decay when the validation accuracy plateaued for 2,000 iterations 
• Activation function: Leaky ReLu20 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 20,000 iterations 

Metastasis identification task 

1. The probability maps were eroded and subsequently thresholded. 
2. Connected components were extracted from the thresholded probability map. 
3. Multiple points were uniformly sampled per region as lesion detection points. 
4. The lesion probability was calculated as the mean probability of the pixels inside the connected component.  

 



Whole-slide image classification task 

A separate CNN, with the same architecture as the one trained for localizing metastases, was trained taking as input 
the probability map at low resolution to directly predict whether the slide contains metastasis or not. 

Results 

This method achieved an FROC true positive fraction score of 0.575 for task 1 and an AUC of 0.779 (95% CI, 0.694 
- 0.860) for task 2. The method ranked 7th and 17th in the first and the second leaderboards, respectively. 

  



METHOD 3 & 4 
Team name: HMS & MIT (I & II) 

Authors: Dayong Wang, Aditya Khosla, Rishab Gargeya, Humayun Irshad, and Andrew Beck 

Affiliation: Harvard Medical School (BIDMC) and Massachusetts Institute of Technology (CSAIL), USA 

Email: dwang5@bidmc.harvard.edu 

Introduction 

Two methods were submitted. Both methods are based on deep convolutional neural networks (CNNs). Key aspects 
include: feature-based post-processing to compute lesion and slide scores and a separately trained model with hard-
negative samples. The main difference between the first and second methods are the use of a whole-slide image stain 
standardization algorithm21 and more comprehensive data augmentation strategy in the second method. 

Preprocessing 

• Tissue detection: Conversion to the HSV color space22 and subsequent Otsu thresholding23 for each 
channel. Final tissue mask is achieved by combining the individual channel masks. 

• Preprocessing magnification: Image level 5 (pixel size = 7.8×7.8 µm2) 
• (Method I) Staining normalization: None 
• (Method II) Staining normalization: Whole-slide image color standardizer (WSICS)21 

Deep learning framework 

Architecture:  

• 22-layer GoogLeNet3 

Patch sampling: 

• Patch size: 224×224 
• Level: 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: Two million for each class 
• Patch sampling strategy: Patches were sampled uniformly from positive and negative regions. Hard-

negative mining was performed after initial classification to augment the training set. 
• (Method I) Data augmentation: Rotation, random cropping 
• (Method II) Data augmentation: Rotation, random cropping and addition of color noise 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Random sampling from a Gaussian distribution 
• Batch size: 32 
• Batch normalization15: No 
• Regularization: L2-regularization (0.0005) and 50% dropout16 
• Learning rate: 0.01, multiplied by 0.5 every 50,000 iterations 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 300,000 iterations 

Metastasis identification task 

1. Obtain probability maps from the initial model (the model without hard-negative mining) and the model 
with hard-negative mining. 



2. Threshold the probability map of the initial model at 0.9. 
3. Extract connected components. 
4. Take the center point of each connected component as the lesion location. 
5. The lesion probability score is calculated as the sum the values in that region in both probability maps. 
6. (Method II only) Each lesion score is additionally weighted by the slide-based score (obtained from the 

whole-slide image classification task). 

Whole-slide image classification task 

A set of global and local features were calculated for the entire slide. The global features are: 

- The ratio between the area of metastatic regions and the tissue area 
- The sum of all cancer metastases probabilities detected in the metastasis identification task, divided by the 

tissue area 

These global features were calculated at 5 different thresholds (0.5, 0.6, 0.7, 0.8 and 0.9) resulting in 10 global 
features. 

Local features were calculated based on the two largest metastatic candidate regions at a threshold of 0.5. In total 9 
features per region were calculated resulting in a total of 18 features. The local features are: 

- Area: The area of connected region 
- Eccentricity: The eccentricity of the ellipse that has the same second-moments as the region 
- Extend: The ratio of region area over the total bounding box area 
- Bounding box area 
- Major axis length: The length of the major axis of the ellipse that has the same normalized second central 

moments as the region 
- Max/mean/min intensity: The maximum/mean/minimum probability value in the region 
- Aspect ratio of the bounding box 
- Solidity: Ratio of region area over the surrounding convex area 

Using the 28-length feature vectors a random forest classifier12 was trained to assign the slide level score. 

Results 

The first method (HMS & MIT I) achieved an FROC true positive fraction score of 0.693 for task 1 and an AUC of 
0.923 (95% CI, 0.855 - 0.977) for task 2. This method ranked 5th on both leaderboards. The second method (HMS & 
MIT II) achieved an FROC true positive fraction score of 0.807 for task 1 and an AUC of 0.993 (95% CI, 0.983 - 
0.999) for task 2. This method ranked 1st on both leaderboards. 

  



METHOD 5 
Team name: ExB 

Authors: Christian Hass, Elia Bruni 

Affiliation: ExB Research and Development 

Email: bruni@exb.de 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of the ResNet4 
architecture and varying class balance during training. 

Preprocessing 

• Tissue detection: The image was divided into 5×5 tiles. For each tile, if the mean color difference between 
different RGB channels was lower than a threshold, the tile was considered as background. 

• Preprocessing magnification: Image level 6 (pixel size = 15.6×15.6 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 34-layer ResNet4 

Patch sampling: 

• Patch size: 256×256 
• Level: 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: 1.6 million 
• Patch sampling strategy: Training was started with a balanced sampling between the positive and negative 

class. As the training proceeded the distribution of positive/negative samples was slowly changed to match 
the original distribution in the images. 

• Data augmentation: Rotation and mirroring 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: MSRA initialization24 
• Batch size: 16 
• Batch normalization15: Yes 
• Regularization: L2 regularization (0.0001) 
• Learning rate: Initial learning rate of 0.01, which was reduced to 0.001 after 40,000 iterations, and to 

0.0001 after 60,000 iterations 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 100,000 iterations 

Metastasis identification task 

1. Threshold the probability map at level 0 and remove small positive areas (< 834 pixels at a threshold of 
0.4) from the probability map 

2. Perform regional non-maxima suppression 
3. Extract the center of gravity of the remaining regions 



4. The lesion score for each region is computed as the maximum probability within the region 

Whole-slide image classification task 

The slide score was computed as the maximum score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.511 for task 1 and an AUC of 0.916 (95% CI, 0.858 
- 0.962) for task 2. The method ranked 10th and 6th in the first and the second leaderboards, respectively. 

  



METHOD 6 
Team name: HTW-Berlin 

Authors: Jonas Annuscheit, Peter Hufnagl 

Affiliation: HTW Berlin, Berlin, Germany 

Email: Jonas.Annuscheit@student.htw-berlin.de 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of a conditional 
random field as recurrent neural network11 on top of a fully convolutional network25 and the use of a pre-trained 
network for initialization of weights. 

Preprocessing 

• Tissue detection: The difference between the red and green channels from the RGB color space was 
thresholded to identify tissue regions. 

• Preprocessing magnification: Image level 4 (pixel size = 3.9×3.9 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• CRFasRNN11 

Patch sampling: 

• Patch size: 440×440 
• Level: 4 (pixel size = 3.9×3.9 µm2) 
• Number of training samples: 400,000 
• Patch sampling strategy: All patches were uniformly sampled from positive slides. 
• Data augmentation: Rotation and mirroring 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Pre-trained model trained on the Pascal VOC12 dataset26 
• Batch size: 1 
• Batch normalization15: Yes 
• Regularization: 50% dropout16 
• Learning rate: Fine-tuning using a learning rate of 6.0e-13 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 3 epochs 

Metastasis identification task 

1. The probability map was thresholded 
2. The center of gravity of each region was considered as the lesion location and the probability value at that 

location was taken as the lesion score. 
3. For low probability regions the surrounding area was scanned and the highest probability was assigned as 

likelihood for that region to be a metastasis. 



Whole-slide image classification task 

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.187 for task 1 and an AUC of 0.768 (95% CI, 0.665 
- 0.853) for task 2. The method ranked 25th and 18th in the first and the second leaderboards, respectively. 

  



METHOD 7 
Team name: NLP LOGIX 

Authors: Matt Berseth 

Affiliation: NLP LOGIX, LLC. 

Email: matt.berseth@nlplogix.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of ADAM 
optimization18, computation of lesion and slide scores with second-stage random forest classifiers12 and use of 
GrabCut27 and watershed transform28 for lesion segmentation. 

Preprocessing 

• Tissue detection: The image was divided into non-overlapping 256×256 tiles. Patches that had fewer than 
500 unique colors or where the most frequently occurring RGB color code made up more than 90% of the 
patches pixels were considered background. 

• Preprocessing magnification: Image level 0 (pixel size = 0.24×0.24 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 7-layer AlexNet1 

Patch sampling: 

• Patch size: 256×256  
• Level: 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: 250,000 
• Patch sampling strategy: 15% positive patches, 85% negative patches 
• Data augmentation: Rotation and mirroring 

Parameters: 

• Optimization method: ADAM18 
• Weight initialization: Random sampling from a truncated normal distribution 
• Batch size: 50 
• Batch normalization15: Yes 
• Regularization: 50% dropout16 
• Learning rate: 0.0001 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 50,000 iterations (the training was stopped when the validation loss 

stopped decreasing) 

Metastasis identification task 

1. Probability map was segmented with GrabCut27 and watershed segmentation28. 
2. The center of gravity of each region was considered as the location of the lesion candidate. 
3. Summary statistics on cluster size and probability distribution were fed to a random forest classifier12 to 

determine the lesion score. 



Whole-slide image classification task 

Summary metrics from all lesion candidate clusters were calculated and fed to another random forest classifier12 to 
determine the slide score. 

Results 

This method achieved an FROC true positive fraction score of 0.386 for task 1 and an AUC of 0.830 (95% CI, 0.742 
- 0.899) for task 2. The method ranked 12th and 13th in the first and the second leaderboards, respectively. 

  



METHOD 8 
Team name: Quincy Wong 

Authors: Quincy Wong 

Affiliation: Independent participant 

Email: qwong77@yahoo.ca 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of SegNet8 
architecture (encoder-decoder network) pre-trained with weights from VGG-166 and good results with only very 
limited additional training data. 

Preprocessing 

• Tissue detection: Tiles containing tissue were selected based on overall intensity value. If the value was too 
high the tile was considered background. 

• Preprocessing magnification: Image level 1 (pixel size = 0.49×0.49 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 37-layer SegNet8 (encoder-decoder network) 

Patch sampling: 

• Patch size: 480×360 
• Level: 1 (pixel size = 0.49×0.49 µm2) 
• Number of training samples: Less than 1000 per class 
• Patch sampling strategy: Roughly balanced sampling, manual addition of visually interesting patches 
• Data augmentation: Mirroring of only manually selected visually interesting regions 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Pre-trained weights of VGG-166 
• Batch size: 2 
• Batch normalization15: Yes 
• Regularization: 50% drop out16 on selected deeper/middle layers 
• Learning rate: 0.001 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 50,000 epochs 

 

Metastasis identification task 

1. Candidate lesions were determined by thresholding of the probability map (threshold value of 0.98) and 
morphologic operations. 

2. The regions were downsampled to the resolution of level 4 (pixel size = 3.9×3.9 µm2). 



3. Centroids of remaining regions were calculated. Lesions with an area below 50 pixels received a 
probability penalty of 0.15 for each 4 pixels below 50. Larger centroids were given a bonus but never 
exceeded 1.0. 

Whole-slide image classification task 

The slide score were computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.367 for task 1 and an AUC of 0.865 (95% CI, 0.789 
- 0.924) for task 2. The method ranked 14th and 11th in the first and the second leaderboards, respectively. 

  



METHOD 9 
Team name: Osaka University 

Authors: Seiryo Watanabe , Shigeto Seno, Yoichi Takenaka, Hideo Matsuda 

Affiliation: Department of biomedical engineering, Osaka University, Japan 

Email: s-wtnb@ist.osaka-u.ac.jp 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of the GoogLeNet3 
architecture and use of an averaging filter in the post-processing stage. 

Preprocessing 

• Tissue detection: 300×300 tiles were extracted from the image and saved to disk. If the file size (JPEG 
compressed) was smaller than 18KB the tile was considered background and removed. For the remaining 
tiles, a threshold of 200 was used on the green and blue color channels to identify background pixels. 

• Preprocessing magnification: Image level 0 (pixel size = 0.24×0.24 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 22-layer GoogLeNet3 

Patch sampling: 

• Patch size: 300×300 
• Level: 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: One million 
• Patch sampling strategy: Balanced sampling from all training slides 
• Data augmentation: None 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Random sampling from a Gaussian distribution 
• Batch size: 24 
• Batch normalization15: No 
• Regularization: None 
• Learning rate: 0.01 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 10 million iterations 

Metastasis identification task 

1. Probability maps were generated by first dividing the image at level 0 into non-overlapping patches of size 
300×300 and classifying each patch.  

2. Pixels in the probability map with a value lower than 0.1 were suppressed. 
3. The probability maps were filtered with a local 3×3 averaging filter. 
4. The resulting probability map was thresholded (threshold value of 0.5) and the center points of the resulting 

regions were considered candidate lesions. 



5. The lesion scores were computed as the maximum probability value within the regions. 

Whole-slide image classification task 

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.347 for task 1 and an AUC of 0.732 (95% CI, 0.629 
- 0.824) for task 2. The method ranked 16th and 23rd in the first and the second leaderboards, respectively. 

  



METHOD 10 
Team name: METU 

Authors: Ugur Halici, Mustafa Ümit Öner 

Affiliation: Departments of Electrical and Electronics Engineering, GSNAS Neuroscience and Neurotechnology, 
and Graduate School of Informatics, Middle East Technical University, Turkey 

Email: halici@metu.edu.tr 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of a custom CNN 
architecture with relatively few layers yet good performance, and custom confidence filtering for post-processing. 

Preprocessing 

• Tissue detection: Otsu thresholding  
• Preprocessing magnification: Image level 7 (pixel size = 31.1×31.1 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• Custom CNN – 2 convolutional layers and 2 fully connected layers 

Patch sampling: 

• Patch size: 64×64 
• Level: 2 (pixel size = 0.97×0.97 µm2) 
• Number of training samples: 240,000 samples per class 
• Patch sampling strategy: Negative samples were sampled only from negative slides 
• Data augmentation: 48×48 random cropping from 64×64 patches 

Parameters: 

• Optimization method: Stochastic gradient descent  
• Weight initialization: Xavier’s method19 
• Batch size: 128 
• Batch normalization15: No 
• Regularization: L2 regularization (0.0018) 
• Learning rate: Initial learning rate was set to 0.1 and updated at 750,000 iterations to 0.01 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 1.125 million iterations 

 

Metastasis identification task 

1. The probability map was filtered with Gaussian filters and thresholded. 
2. Connected components were extracted. Each connected component was considered a candidate region. 
3. For each candidate lesion, the point farthest to the boundaries among points that have probability values in 

the interval of [max P -0.2,max P ] was selected as representative. 
4. The probability value at the representative location was taken as the lesion score. 



Whole-slide image classification task 

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.389 for task 1 and an AUC of 0.864 (95% CI, 0.786 
- 0.927) for task 2. The method ranked 11th and 12th in the first and the second leaderboards, respectively. 

  



METHOD 11 
Team name: Warwick-QU 

Authors: Muhammad Shaban1, Talha Qaiser2, Ruqayya Awan1, Korsuk Sirinukunwattana2, Yee-Wah Tsang2, and 
Nasir Rajpoot2 

Affiliation: 1Department of Computer Science and Engineering, College of Engineering, Qatar University 
2Department of Computer Science, University of Warwick, England 

Email: muhammad.shaban@qu.edu.qa 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of a CNN model in 
the preprocessing stage to segment the tissue regions and use of a U-NET-like7 architecture for lesion segmentation. 

Preprocessing 

• Tissue detection: Fully convolutional CNN 
• Preprocessing magnification: Image level 2 (pixel size = 0.97×0.97 µm2) 
• Staining normalization: Reinhard staining normalization29 

Deep learning framework 

Architecture:  

• 15-layer U-NET7 

Patch sampling: 

• Patch size: 428×428 
• Level: 2 (pixel size = 0.97×0.97 µm2) 
• Number of training samples: 8,000 positive and 12,000 negative 
• Patch sampling strategy: Positive patches were extracted from all metastasis annotations. Negative patches 

were extracted with random sampling. Spectral clustering was applied to find visually distinct patches for 
training for both classes. 

• Data augmentation: None 

Parameters: 

• Optimization method: Adadelta30 
• Weight initialization: Random initialization 
• Batch size: 10 
• Batch normalization15: No 
• Regularization: 50% dropout16 
• Learning rate: initially set to 0.001 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 120,000 iterations 

Metastasis identification task 

1. Two binary lesion masks were computed using two different thresholds. 
2. Lesion regions with an area ratio of less than 0.2 (computed as the area ratio of the same lesion in the two 

thresholded masks) were removed from further consideration. 
3. The lesion centroid was extracted as the lesion location. 



4. The lesion score was extracted as the minimum probability within the lesion weighted by its area. 

Whole-slide image classification task 

The probability of the largest tumor region was used as slide probability score. 

Results 

This method achieved an FROC true positive fraction score of 0.305 for task 1 and an AUC of 0.796 (95% CI, 0.711 
- 0.871) for task 2. The method ranked 18th and 16th in the first and the second leaderboards, respectively. 

  



METHOD 12 & 13 
Team name: CAMP-TUM (I & II) 

Authors: Bharti Munjal, Amil George, Shadi Albarqouni, Stefanie Demirci, Nassir Navab 

Affiliation: Technische Universitat Munchen, Computer Aided Medical Procedure (CAMP), Munich, Germany 

Email: shadi.albarqouni@tum.de 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Two submissions were made based on two 
different network architectures. Key aspects of the method with better performance include: use of the GoogLeNet3 
architecture, hard-negative mining and postprocessing with a random forest classifier12 trained with region-level 
features. 

Preprocessing 

• Tissue detection: Otsu thresholding23 
• Preprocessing magnification: Image level 3 (pixel size = 1.94×1.94 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• Method (I): 5-layer AggNet13 (multi-scale network)  
• Method (II): 22-layer GoogLeNet3 

Patch sampling: 

• Patch size: Patches of size 33×33 (method I) and 224×224 (method II) were extracted from level 3 
(pixel size = 1.94×1.94 µm2) and level 6 (pixel size = 15.6×15.6 µm2), respectively. 

• Number of training samples: 2 million patches for method I and 240,000 patches for method II. 
• Patch sampling strategy: Initially a CNN model was trained with uniformly sampled patches from level 6. 

Subsequently, a new CNN model was trained with patches sampled from level 3 including false positives 
of the first model. Normal patches were sampled from both positive and negative slides.  

• Data augmentation: Rotation and flipping. 

Parameters: 

• Optimization method: Adaptive gradient descent (AdaGrad)31 
• Weight initialization: Xavier’s method19 
• Batch size: 32 
• Regularization: 50% dropout16 
• Learning rate: 0.0001 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 1.1 million iterations 

Metastasis identification task 

For each slide, a probability map was produced using the CNN model trained with patches from level 3. Candidate 
metastatic regions were detected by smoothing the probability maps with a Gaussian filter and thresholding with a 
threshold value optimized on a validation set. For method II, further postprocessing was performed. For each 
candidate in the resulting probability map, the area, orientation, major/minor axis length ratio, and probability map 



statistics (max, min, and mean) were extracted. The final probability score for each candidate was produced with a 
random forest classifier12 trained with these features.  

Whole-slide image classification task  

For each slide, a probability score was produced by averaging the probability values of the top three candidate 
metastases. 

Results 

The first method (CAMP-TUM I) achieved an FROC true positive fraction score of 0.184 for task 1 and an AUC of 
0.691 (95% CI, 0.580 - 0.787) for task 2. This method ranked 26th and 27th on the first and second leaderboards, 
respectively. The second method (CAMP-TUM II) achieved an FROC true positive fraction score of 0.273 for task 1 
and an AUC of 0.737 (95% CI, 0.633 - 0.819) for task 2. This method ranked 19th and 22nd on the first and second 
leaderboards, respectively.  



METHOD 14 
Team name: TAMPERE II 

Authors: Kaisa Liimatainen, Kimmo Kartasalo, Mira Valkonen, Leena Latonen, Pekka Ruusuvuori 

Affiliation: BioMediTech, University of Tampere, Finland 

Email:  kaisa.liimatainen@tut.fi 

Introduction 

This method is based on deep convolutional neural networks (CNNs). A key aspect of this method is the use of a 
VGG-like6 CNN model. 

Preprocessing 

• Tissue detection: Otsu thresholding23 applied to the S component of the HSV color space22 and 
morphological operations to remove spurious regions. 

• Preprocessing magnification: Image level 5 (pixel size = 7.8×7.8 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 7-layer VGG-like6 architecture with five convolutional and two fully connected layers 

Patch sampling: 

• Patch size: 32×32  
• Level: 5 (pixel size = 7.8×7.8 µm2) 
• Number of training samples: 32,000 from both classes 
• Patch sampling strategy: Normal patches were uniformly sampled from both negative and positive slides. 
• Data augmentation: Translation and flipping 

Parameters: 

• Optimization method: Stochastic gradient descent with momentum32 
• Weight initialization: Random sampling from a uniform distribution  
• Batch size: 16 
• Regularization: None 
• Learning rate: Initial learning rate of 0.01 with momentum of 0.9 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 20,000 iterations 

  



Metastasis identification task 

For each slide, a probability map at image level 6 was produced with the trained CNN model. Candidate metastatic 
regions were detected by max-filtering of the probability map with 3×3 kernel, thresholding, and removal of small 
connected components. The remaining connected components in the thresholded probability map were considered 
candidate regions with probability scores equal to the maximum probability value within the region. 

Whole-slide image classification task  

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.252 for task 1 and an AUC of 0.713 (95% CI, 0.612 
- 0.801) for task 2. The method ranked 21st and 26th in the first and the second leaderboards, respectively. 

  



METHOD 15 & 16 
Team name: VISILAB (I & II) 

Authors: M. Milagro Fernandez-Carrobles, Ismael Serrano, Oscar Deniz, Gloria Bueno 

Affiliation: VISILAB, E.T.S.I.I, University of Castilla-La Mancha, Ciudad Real, Spain 

Email: Gloria.Bueno@uclm.es 

Introduction 

This method is based on a random forest classifier12 using texture features. The authors performed a comparative 
analysis with a CNN-based method (method II). 

Preprocessing 

• Tissue detection: Color thresholding 
• Preprocessing magnification: Level 6 (pixel size = 15.55×15.55 µm2) 
• Staining normalization: None 

Classification framework: 

Classifier:  

• Method I: Random forest classifiers12 with 50 decision trees 
• Method II: 3-layer CNN with two convolutional layers 

Features for metastasis identification (method I): 

• Haralick texture features33 

Features for whole-slide image classification (method I): 

• Morphometric features: Area, convex area, convex hull, Euler number, extent, fill area, major axis length, 
minor axis length, perimeter, solidity. 

• Geometric features: Bounding box, centroid, eccentricity, equivalent diameter, orientation, extrema. 

Patch sampling: 

• Patch size: For method I, patches of size 400×400 from level 0 were extracted. These patches were 
resampled to a size of 40×40 for the CNN used in method II. 

• Number of training samples: 90,000 positive samples and 8.5 million negative samples 
• Patch sampling strategy: Uniform sampling. Normal patches were sampled from both negative and positive 

slides. 

Parameters (method II): 

• Optimization method: Stochastic gradient descent with momentum32 
• Weight initialization: Xavier’s method19 
• Batch size: 64 
• Regularization: L2 regularization (0.0005) 
• Learning rate: 0.0005 with momentum 0.9 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 480 iterations 

 



Metastasis identification task 

For method I, for each slide, all non-overlapping regions of size 400×400 from level 0 were classified as metastasis 
or non-metastasis using the random forest classifier and Haralick texture features. For method II, the probability 
maps were generated using the trained CNN. In both methods, the resulting probability map was thresholded with a 
threshold value of 0.7, and post-processed with morphological operators to connect neighboring regions using a 
dilation operation with a disk-shaped structuring element with radius 10. 

Whole-slide image classification task  

For each region, several morphometric and geometric features (in the probability map) were extracted such as: area, 
bounding box, centroid, convex area, convex hull, eccentricity, equivalent diameter, Euler number, extent, filled 
area, major axis length, minor axis length, orientation, perimeter, extrema and solidity (features from the MATLAB 
regionprops function). Subsequently, for each slide, these region-based features were summarized by calculating the 
mean, standard deviation, sum, minimum, maximum, median, mode, variance, covariance, kurtosis and skewness of 
each feature. Finally an SVM classifier was used to compute a score for each slide. 

Results 

The first method (VISILAB I) achieved an FROC true positive fraction score of 0.142 for task 1 and an AUC of 
0.653 (95% CI, 0.551 - 0.748) for task 2. This method ranked 29th on both leaderboards. The second method 
(VISILAB II) achieved an FROC true positive fraction score of 0.116 for task 1 and an AUC of 0.651 (95% CI, 
0.549 - 0.742) for task 2. This method ranked 31st and 30th on the first and second leaderboards, respectively. 

  



METHOD 17 & 18 
Team name: U of Toronto (I & II) 

Authors: Oren Kraus 

Affiliation: University of Toronto, Electrical and Computer Engineering, Canada 

Email: oren.kraus@mail.utoronto.ca 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of multiple CNN 
models trained at different magnification levels and use of learned deconvolutional layers for upsampling. Two 
different approaches for merging the results from multiple CNNs were investigated, which resulted in two 
submissions. 

Preprocessing 

• Tissue detection: Otsu thresholding23 
• Preprocessing magnification: Image level 5 (pixel size = 7.8×7.8 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• 10-layer VGG-like6 fully convolutional neural network25 

Patch sampling 

• Patch size: 300×300 tiles from levels 2 (pixel size = 0.97×0.97 µm2), 3 (pixel size = 1.9×1.9 µm2), 4 
pixel size = 3.9×3.9 µm2  and 5 (pixel size = 7.8×7.8 µm2). 

• Number of training samples: 18,432 
• Patch sampling strategy: For positive slides, one third of the patches were sampled from positive regions, 

one third from metastasis border regions, and one third from negative regions. The number of patches 
sampled from each slide was proportional to the tissue area. 

• Data augmentation: Rotation, translation, and flipping 

Parameters: 

• Optimization method: Adam18 
• Weight initialization: Xavier’s method19 
• Batch size: 16 
• Regularization: 50% dropout16 
• Learning rate: 0.0003 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 3.6 million iterations 

Metastasis identification task 

Two different approaches were used for computing probability maps. The first method took the mean across 
different scales as the final probability map. In the second method, the outputs of the CNNs trained at different 
magnification were used as inputs to another CNN model that produced a merged probability map. The final 
probability map was thresholded and postprocessed with morphological operators to identify positive regions. The 
probability score of each region was defined as the maximum value of the probability map within the region. 



Whole-slide image classification task  

The probability score for each whole-slide image was produced with a logistic regression classifier trained with 
features describing the detected metastatic regions: mean, min., max. probability score and size features. 

Results 

The first method (U of Toronto I) achieved an FROC true positive fraction score of 0.352 for task 1 and an AUC of 
0.815 (95% CI, 0. 0.722 - 0.886) for task 2. This method ranked 15th on both leaderboards. The second method (U of 
Toronto II) achieved an FROC true positive fraction score of 0.382 for task 1 and an AUC of 0.762 (95% CI, 0.659 - 
0.846) for task 2. This method ranked 13th and 19th on the first and second leaderboards, respectively. 

  



METHOD 19 
Team name: USF 

Authors: Hady Ahmady Phoulady 

Affiliation: University of South Florida, Tampa, USA 

Email: parham.ap@gmail.com 

Introduction 

This method is based on a random forest classifier12 using color and texture features. A key aspect of this method is 
the use of a lymphocyte probability map in the preprocessing step to exclude non-tumor regions. 

Preprocessing 

• Tissue detection: Thresholding of a lymphocyte probability map using a hierarchical multilevel 
thresholding method34 to exclude non-tumor regions 

• Preprocessing magnification: Level 4 pixel size = 3.9×3.9 µm2  
• Staining normalization: None 

Classification framework: 

Classifier:  

• Random forest classifier12 

Features: 

• Grayscale intensity histogram  
• Gray-level concurrence features33 
• Local binary patterns35 

Patch sampling: 

• Patch size: 101×101  
• Level: 1 pixel size = 0.49× 0.49 µm2  
• Number of training samples: 500,000 positive samples and one million negative samples 
• Patch sampling strategy: Patches were sampled with higher frequency in metastatic regions. Normal 

patches were sampled from both negative and positive slides. 

Metastasis identification task 

The random forest classifier was used to produce a probability map that was post-processed with Gaussian filtering 
and thresholded to obtain metastatic regions. Each region was assigned a probability score equal to the mean of the 
probability of the region.  

Whole-slide image classification task  

The probability score for each whole-slide image was computed as the weighted arithmetic mean (with weights 3 
and 1) of the two metastatic regions with the highest probability scores. 

Results 

This method achieved an FROC true positive fraction score of 0.179 for task 1 and an AUC of 0.727 (95% CI, 0.611 
- 0.823) for task 2. The method ranked 27th and 24th in the first and the second leaderboards, respectively. 

  



METHOD 20 
Team name: TAMPERE I 

Authors: Mira Valkonen, Kimmo Kartasalo, Kaisa Liimatainen, Leena Latonen, Pekka Ruusuvuori 

Affiliation: BioMediTech, University of Tampere, Finland 

Email: valkonen.mira@gmail.com; 

Introduction 

This method is based on a random forest classifier12 using texture features. A key aspect of this method is the use of 
nuclei density features. 

Preprocessing 

• Tissue detection: Otsu thresholding23 applied to the S component from the HSV color space22 and 
morphological operations to remove spurious regions. 

• Preprocessing magnification: Image level 5 (pixel size = 7.8×7.8 µm2) 
• Staining normalization: Histogram matching 

Classification framework: 

Classifier:  

• Random forest classifier12 with 50 classification trees 

Features: 

• Gray-level concurrence features33 
• SIFT descriptors36  
• Local binary patterns35 
• Histogram of oriented gradients (HOG)37 
• The independent elements of the co-variance matrix of the ellipses fitted to the extracted maximally stable 

extremal regions (MSER)38 and number of MSER regions. 
• All texture features were extracted from both the hematoxylin and eosin channels obtained with color 

deconvolution39. 
• Nuclei density descriptors (mean inter-nuclei distance and number of nuclei) from watershed-based nuclei 

segmentation.  

Patch sampling: 

• Patch size: 200×200  
• Level: 5 (pixel size = 7.8×7.8 µm2) 
• Number of training samples: 200,000 positive samples and 200,000 negative samples  
• Patch sampling strategy: Normal patches were randomly sampled from both negative and positive slides, 

including metastatic region borders. 

 

Metastasis identification task 

For each slide, a probability map was produced with the trained random forest classifier. Candidate metastatic 
regions were detected by max. filtering of the probability map, thresholding, and connected component analysis. The 
connected components in the thresholded probability map were considered candidate regions with probability scores 
equal to the mean probability value within the region. 



Whole-slide image classification task  

The slide score was computed as the maximum score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.257 for task 1 and an AUC of 0.761 (95% CI, 0.662 
- 0.837) for task 2. The method ranked 20th on both leaderboards. 

  



METHOD 21 & 22 
Team name: SMART IMAGING (I & II) 

Authors: Vitali Khvatkov, Alexei Vylegzhanin 

Affiliation: Smart Imaging Technologies Co., US 

Email: vitali.khvatkov@simagis.us 

Introduction 

This team submitted two methods for evaluation. The first method uses a conventional machine learning approach, 
while the second method is based on a combination of deep learning and conventional machine learning using 
handcrafted features. Key aspects include: multiscale analysis, use of nuclei density features and use of the 
GoogLeNet3 architecture. The proposed solution is available on the Simagis Live platform (http://web-
pathology.net). 

Preprocessing 

• Tissue detection: Ensemble of SVM classifiers with 27 color and texture features 
• Preprocessing magnification: Image level 1 pixel size = 0.49×0.49 µm2   
• Staining normalization: Transform color coordinates to modified HSV color space22 as follows, (1) 

transform color to HSV space; (2) shift Hue by 160 by subtracting/adding 160 from/to H value , (3) trim 
white color by removing pixels with V (value) above 0.9 threshold, (4) cluster to 3 phase system by K-
mean clustering of pixel colors in modified HSV color system. Normalized images have been used in all 
detection/classification steps of the algorithm. 

Classification framework (method I): 

Classifier:  

• Ensemble of SVM classifiers9 used to classify patches at 3 different resolutions. 
• Candidate regions produced by the SVM classifiers were further processed using multiscale cascade of 

AdaBoost10 models. 

Features: 

• Combination of rotation-invariant local binary patterns35 and color features (features selection and 
optimization was done using the caret package in R). 

Patch sampling: 

• Patch sampling strategy: Normal patches were sampled from both positive and negative slides. The patch 
sizes for the different resolutions are given in the table below. 

Level Pixel Size (µm) Patch Size 
(pixels) 

Patches from 
“tumor” class 

Patches from 
“negative” class 

Level 1 0.24×0.24 µm2 16x16 12630 11449 
Level 2 0.49×0.49 µm2 64x64 6296 7907 
Level 3 1.90×1.90 µm2 128x128 6296 7907 

 

Deep learning framework (method II) 

Architecture:  

• 22-layer GoogLeNet3 



 

Patch sampling: 

• Patch size: 128×128 from  
• Level: 1 (pixel size = 0.49×0.49 µm2) 
• Number of training samples: 14,000 
• Patch sampling strategy: Equal number of positive and negative patches were randomly sampled. Normal 

patches were sampled from both negative and positive slides.  
• Data augmentation: Translation, rotation, and flipping 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Xavier’s method19 
• Batch size: 128 
• Regularization: 50% dropout16 
• Learning rate: 0.01 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 420,000 iterations 

Metastasis identification task  

The probability maps for the first method were computed using the Adaboost classifier. The probability maps for the 
second method were produced with a combination of the Adaboost and CNN classifiers. Candidate lesions were 
localized with the geographic clustering algorithm40. Geographic clustering algorithm identified geographic clusters 
of tiles and center of cluster on slide. The composite probability for each candidate was computed as weighted mean 
of probability of tiles in the cluster. The weights for each cluster member (tile) was computed using the measure of 
“compactness”. 

Whole-slide image classification task  

The slide scores were produced with a SVM classifier that uses features that summarize the distribution of the 
candidate lesions in the slide. 

Results 

The first method (SMART IMAGING I) achieved an FROC true positive fraction score of 0.208 for task 1 and an 
AUC of 0.757 (95% CI, 0. 0.663 - 0.839) for task 2. This method ranked 24th and 21st on the first and second 
leaderboards, respectively. The second method (SMART IMAGING II) achieved an FROC true positive fraction 
score of 0.339 for task 1 and an AUC of 0.821 (95% CI, 0.753 - 0.894) for task 2. This method ranked 17th and 14th 
on the first and second leaderboards, respectively. 



METHOD 23, 24 & 25 
Team name: CULab (I, II & III) 

Authors: Hao Chen, Huang-Jing Lin, Qi Dou, and Pheng-Ann Heng 

Affiliation: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, 
Hong Kong 

Email: jackie.haochen@gmail.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). There are three submissions by this team, 
each employing a different CNN architecture. A key aspect of the best performing method is the use of a fully 
convolutional architecture for dense predictions. 

Preprocessing 

• Tissue detection: Color thresholding 
• Preprocessing magnification: Image level 5 (pixel size = 7.8×7.8 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• Method I: VGG-166 
• Method II: Cascade of two CNNs41. The first CNN (VGG-16) works with lower magnification images 

(level 1), has very high sensitivity and quickly eliminates many negative regions. The second CNN, a 152-
layer ResNet architecture4, refines the results from the first model. 

• Method III: Fully convolutional network adapted from VGG-166 for dense predictions 

Patch sampling: 

• Patch size: 224×224 for second CNN of method II; 244x244 for other networks. 
• Level: 0 pixel size =0.24×0.24 µm2  used for method III and the second CNN of method II. Level 1 

(pixel size = 0.49×0.49 µm2) used for method I and the first CNN of method II. 
• Number of training samples: 15 million (5% positive) 
• Patch sampling strategy: Uniform sampling 
• Data augmentation: Translation and flipping 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Pre-trained with the ImageNet dataset5 
• Batch size: 10 for ResNet-152, and 50 for the other architectures 
• Regularization: L2 regularization (0.0005) 
• Learning rate: Initially set at 0.001 and decreased by a factor of 10 every 100,000 iterations. 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 300,000 iterations 

Metastasis identification task 

For each slide, a probability map was produced using the trained CNN model (at level 0 with a stride of 32). 
Candidate metastatic regions were detected by filtering the probability map with a median filter (kernel size of 3×3) 



and thresholding. Each connected component in the resulting probability map was considered a candidate detection 
with a probability score equal to the maximum probability value within the region. This procedure was used for all 
three methods. 

Whole-slide image classification task  

The slide score was computed as the maximum score within the slide. 

Results 

The first method (CULab I) achieved an FROC true positive fraction score of 0.544 for task 1 and an AUC of 0.909 
(95% CI, 0.851 - 0.954) for task 2. This method ranked 8th and 7st on the first and second leaderboards, respectively. 
The second method (CULab II) achieved an FROC true positive fraction score of 0.527 for task 1 and an AUC of 
0.906 (95% CI, 0.841 - 0.957) for task 2. This method ranked 9th on both leaderboards. The third method (CULab 
III) achieved an FROC true positive fraction score of 0.703 for task 1 and an AUC of 0.942 (95% CI, 0.888 - 0.980) 
for task 2. This method ranked 4th on both leaderboards. 

  



METHOD 26 
Team name: DeepCare 

Authors: Tong Xu 

Affiliation: DeepCare Inc. 

Email: txu@deepcare.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: the use of the pre-trained 
GoogLeNet3 architecture and a second-stage SVM classifier for computing slide scores. 

Preprocessing 

• Tissue detection: Multi-thresholding in the HSV22 color space. 
• Preprocessing magnification: Image level 3 (pixel size =  1.94×1.94 !"!) 
• Color normalization: None 

Deep learning framework 

Architecture: 

• 22-layer GoogLeNet3 

Patch sampling: 

• Patch size: 256×256  
• Level : 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: 700,000 
• Patch sampling strategy: Patches were uniformly sampled from positive and negative regions. Negative 

samples were taken from both positive and negative slides. For positive slides, additional negative samples 
were taken from regions bordering metastatic regions. 

• Data augmentation: Mirroring and rotation of the positive samples 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Pretrained GoogLeNet model with the ImageNet dataset5  
• Batch size: 64 
• Batch normalization15: Yes 
• Regularization: L2 regularization (0.0005) 
• Learning rate: Initialized at 0.01 and decreased every 100,000 iterations by a factor of 0.1 
• Activation function: ReLu17 
• Loss function: Cross-entropy 
• Number of training epochs/iterations: 120,000 iterations 

Metastasis identification task 

Using the trained GoogLeNet model, a probability map was generated for each slide. Candidate regions were 
produced with connected component analysis. Regions with an area smaller than 20 pixels were rejected as false 
positives. The lesion scores were computed as the mean of the probability values within the region. The center of 
gravity and the probability score of the lesions with a probability higher than 0.85 were reported. 

 



Whole-slide image classification task  

For each whole-slide image, five binary masks containing metastatic connected components were generated by 
applying multiple thresholds of 0.5, 0.6, 0.7, 0.8 and 0.9 on the probability map. Subsequently, two types of features 
including 5 shape and 3 statistics-based probability features were extracted from the five multi-thresholded regions. 
These features include: 

• Area 
• Eccentricity 
• Major and minor axis length of the ellipse that has the same normalized second central moments as the 

region 
• Ratio of pixels in the region to the pixels in the total bounding box 
• The mean, maximum, and variance of the probability values inside the multi-thresholded regions of each 

candidate 

Overall, a 40-dimensional feature vector was extracted from each candidate region. The normalized 40-
dimensional feature vectors were then fed into a SVM classifier9 to discriminate between tumor and non-tumor 
regions. The trained SVM classifier was used to discriminate annotated metastases in positive slides from 
candidate findings in negative whole-slide images. The probability score for the whole-slide images were 
computed as the weighted mean of the detected tumor regions present in the whole-slide images. 

Results 

This method achieved an FROC true positive fraction score of 0.243 for task 1 and an AUC of 0.883 (95% CI, 0.806 
- 0.943) for task 2. The method ranked 22nd and 10th on the first and second leaderboards, respectively. 

  



METHOD 27 
Team name: LIB 

Authors: R. Venâncio, B. Ben Cheikh, A. Coron, and D. Racoceanu 

Affiliation: Sorbonne Universiteś, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale 
(LIB), Paris, France 

Email: rui.venancio.t@gmail.com 

Introduction 

This method is based on a SVM9 classifier using color and texture features for automated detection of metastatic 
cancer from whole-slide images of sentinel lymph nodes. 

Preprocessing 

• Tissue detection: K-means clustering 
• Preprocessing magnification: Level 4 pixel size = 3.9×3.9 µm2  
• Staining normalization: Reinhard staining normalization29 

Classification framework: 

Classifier:  

• SVM9 

Features: 

• Haralick texture features33 
• Law’s texture energy measures42 
• Features were selected with sequential forward selection 

Patch sampling: 

• Patch size: 800×800  
• Level: 0 (pixel size = 0.24×0.24 µm2) 
• Number of training samples: 1,100 positive and 1,130 negative 
• Patch sampling strategy: Patches were sampled uniformly from positive and negative regions. Negative 

samples were taken from both positive and negative slides. 

Metastasis identification task 

The slides were divided in rectangular patches. Each patch was classified as positive or negative. The centroids of 
regions larger than four connected positive patches were selected as candidate lesion locations. The lesion scores 
were calculated as the mean of the probability values of all patches within the region. 

Whole-slide image classification task  

If the number of positive patches in a whole-slide image was larger than 11, the mean of the probabilities of all 
positive patches was calculated and reported as the whole-slide score. 

Results 

This method achieved an FROC true positive fraction score of 0.120 for task 1 and an AUC of 0.556 (95% CI, 0.434 
- 0.654) for task 2. The method ranked 30th and 32nd on the first and second leaderboards, respectively. 

  



METHOD 28, 29 & 30 
Team name: HMS-MGH (I, II & III) 

Authors: Aoxiao Zhong, Quanzheng Li 

Affiliation: Gordon Center for Medical Imaging, Clinical Data Science Center, Harvard Medical School, 
Massachusetts General Hospital 

Email: zhongaoxiao@gmail.com 

Introduction 

Three methods were submitted. The first two submissions are similar to the methods of the Harvard & MIT team, 
based on patch-wise classification using GoogLeNet3 and ResNet-1014, respectively. The third submission is based 
on dense prediction using fully convolutional ResNet-101 architecture with atrous convolution and atrous spatial 
pyramid pooling43. 

Preprocessing 

• Tissue detection: Otsu thresholding23 
• Preprocessing magnification: Image level 5 (pixel size = 0.78×0.78 µm2) 
• Staining normalization: None 

Deep learning framework 

Architecture:  

• Method I: GoogLeNet3 
• Method II: ResNet-1014 
• Method III: Fully convolutional ResNet-101 architecture with atrous convolution and atrous spatial 

pyramid pooling (deeplab v243)  

Patch sampling: 

• Patch size: 224×224 for methods I and II, and 512×512 for method III 
•  Level: 0 (pixel size = 0.24×0.24 µm2) for methods I and II, and level 1 pixel size = 0.49×0.49 µm2  for 

method III 
• Number of training samples: 400,000 with 25% of positive patches for methods I and II. On-line sampling 

with approximately 25% positive samples for method III. 
• Patch sampling strategy: Negative patches were sampled from both negative slides and normal regions in 

positive slides. 
• Data augmentation: Mirroring and random cropping for all methods 

Parameters: 

• Optimization method: Stochastic gradient descent 
• Weight initialization: Pre-trained model with the ImageNet dataset5 for methods I and II, and pre-trained 

model with the MS-COCO dataset44 for method III. 
• Batch size: 64 for method I, 128 for method II, 10 for method III 
• Regularization: L2 regularization was used for all methods. The regularization coefficients were 0.0002, 

0.0001, and 0.0005 for methods I, II and III, respectively. 
• Learning rate: The learning rate was initialized at 0.001 and divided by 10 when the error plateaued for 

method I and II. The learning rate was initialized at 2.5e-4 and multiplied by 0.9 every 40,000 iterations for 
method III. 

• Activation function: ReLu17 
• Loss function: Cross-entropy 



• Number of training epochs/iterations: 150,000 iterations for method I, 180,000 iterations for method II and 
40,000 iterations for method III 

Metastasis identification task 

1. Perform connected component analysis of the thresholded probability map (the threshold was set to 0.9 for 
methods I and II and 0.95 for method III). 

2. The centroids of the connected components were used as candidate location. 
3. The mean probability values of the connected components were used as the lesion scores. 
4. Regions with major-axis length smaller than 200 µm were removed as false positives. 

Whole-slide image classification task  

Higher level features were extracted from the tumor heatmaps (computed using the regionprops function in 
skimage45) with thresholds of 0.5 and 0.9 for methods I and II, and thresholds of 0.5 and 0.95 for method III. All 
these features are computed for the largest detected candidate in the whole-slide image: 

• The major axis length 
• The ratio between the area of the candidate region and the total bounding box area 
• Eccentricity of the ellipse that has the same second-order moments as the region 
• Total area 
• Mean intensity  

A random forest classifier12 was trained with these features and subsequently used to produce the probability score 
for each slide. 

Results 

The first method (HMS-MGH I) achieved an FROC true positive fraction score of 0.596 for task 1 and an AUC of 
0.965 (95% CI, 0.928 - 0.989) for task 2. This method ranked 6th and 3rd on the first and second leaderboards, 
respectively. The second method (HMS-MGH II) achieved an FROC true positive fraction score of 0.729 for task 1 
and an AUC of 0.908 (95% CI, 0.846 - 0.961) for task 2. This method ranked 3rd and 8th on the first and second 
leaderboards, respectively. The third method (HMS-MGH III) achieved an FROC true positive fraction score of 
0.760 for task 1 and an AUC of 0.976 (95% CI, 0.941 - 0.999) for task 2. This method ranked 2nd on both 
leaderboards. 

  



eResults 

Stratification according to metastasis size and primary tumor histotype in task 2 

The pathologists’ results were further analyzed in two subcategories: analysis according to metastasis size and 

primary tumor histotype (eTable 1 and eTable 2 in the Supplement). Pathologist without time constraint achieved a 

better sensitivity and AUC for detecting macrometastases (sensitivity of 100% and AUC of 0.994 (95% CI, 0.977-

1.0)) and metastases originating from infiltrating ductal carcinoma (IDC) (sensitivity of 97.0% (95% CI, 89.7%-

100%) and AUC of 0.976 (95% CI, 0.932-1.0)) compared to micrometastases (sensitivity of 88.8% (95% CI, 75.0%-

100%) and AUC of 0.943 (95% CI, 0.868-0.995)) and non-IDC cases (sensitivity of 86.6% (95% CI, 66.7%-100%) 

and AUC of 0.943 (95% CI, 0.848-1.0)), respectively (no statistically significant difference for comparison of 

AUCs, p=0.87 (Bonferroni corrected) for comparison of the performance for the detection of micro and 

macrometastases, and p>0.99 for comparison of the performance for the detection of IDC and non-IDC cases). For 

all 11 pathologists in the simulated routine diagnostic setting, the performance was significantly higher (See eTable 

2 for individual p-values) for detection of macrometastases (mean sensitivity of 92.9% (95% CI, 90.5%-95.8%) and 

mean AUC of 0.964 (range, 0.924-1.0)) compared to micrometastases (mean sensitivity of 38.3% (95% CI, 32.6%-

52.9%) and mean AUC of 0.685 (range, 0.582-0.808)). We also observed that metastases originating from IDC 

(mean sensitivity of 69.2% (95% CI, 65.4%-77.4%) and mean AUC of 0.842 (range, 0.773-0.924)) were more often 

detected compared to non-IDC cases (mean sensitivity of 48.4% (95% CI, 43.2%-59.7%) and mean AUC of 0.738 

(range, 0.656-0.862)) (but not significantly, see eTable2 for the p-values for each pathologist). 

The top-ranking systems performed similarly to the best performing pathologists in detecting macrometastases. The 

performance of the algorithms in detecting micrometastases, however, was considerably more variable. Many of the 

top-ranked algorithms achieved better AUCs than the best pathologist in the panel of 11 (best pathologist AUC = 

0.808 (95% CI, 0.704-0.908) versus best algorithm AUC = 0.997 (95% CI, 0.989-1.0)) in detecting micrometastases. 

The AUC of the two leading algorithms (AUC = 0.997 (95% CI, 0.989-1.0) and 0.957 (95% CI, 0.893-0.999), 

respectively) even surpassed that of the pathologist without time constraint (AUC = 0.9430 (95% CI, 0.868-0.995)). 

With regard to the primary tumor histotype, the majority of the algorithms had higher AUCs for detecting IDC 

metastases than metastases of other types. The top-four performing algorithms achieved higher AUCs than the panel 

of 11 pathologists in detecting metastases of both IDC and non-IDC histotypes (see eTables 2 and eTable5). 



eDiscussion 

Potential reasons for large variability in CNN performance 

The modest performance of some of the algorithms based on convolutional neural networks (CNN), in many cases, 

could be attributed to choosing a low magnification to process the slide, or selecting a very small patch size for 

training. Consequently, the system either lacks the detailed information present in the higher magnifications or loses 

the contextual information that could be captured by a larger patch size. Despite using the right magnification, patch 

size and state-of-the-art CNN architectures, achieving satisfactory results can be challenging. Training deep learning 

models can involve many hyperparameter settings (e.g. learning rate, regularization strength, mini-batch size, etc.). 

Successful and efficient training and debugging of large scale CNNs requires careful selection and adjustment on 

these hyperparameters, and finding out the relation between hyperparameters and validation errors.		

Properties of the top-performing algorithms 

We can summarize the main properties of the high-ranked teams based on 4 main characteristics: network 

architecture, patch-sampling strategy, preprocessing and data augmentation, and network ensemble.  

One common property of the leading teams is that they all used very deep state-of-the-art CNN architectures such as 

GoogLeNet3, VGG-Net6, and ResNet4. The leading team, HMS & MIT (II), trained a 22-layer GoogLeNet model 

and enriched the training data by adding false positive findings produced by an initial model. By doing this, the 

network becomes more knowledgeable on recognizing the more difficult normal regions. The CNNs used in systems 

HMS & MGH (III), HMS & MGH (II), and CULab (III) were ResNet-101, GoogLeNet-22 and VGG-Net-16, 

respectively, all initialized by weights from pre-trained networks and fine-tuned with the challenge data. ResNet-101 

was pre-trained on the MS-COCO dataset44 and the other two models were pre-trained on the large scale 1000-class 

ImageNet dataset5. The high performance of these methods is in accordance with previous studies which have 

validated the efficacy of transfer learning strategies46-48. Some of the key factors contributing to the outstanding 

performance of the HMS & MIT (II) system were the use of the whole-slide image color standardizer (WSICS) 

algorithm21 to normalize the appearance of whole-slide images, and the incorporation of a more rigorous data 

augmentation strategy including rotation, flipping, random cropping, and the addition of random offsets to each 

RGB color channel. The ResNet-101 model used in the system of HMS & MGH (III) used very large image patches 

of size 512×512 that were more than double the input size of all the other systems used in this challenge. On top of 



that, the use of atrous convolution (dilated convolution) and spatial pyramid pooling43 enabled the system to capture 

objects as well as image context at multiple scales.  

Another factor contributing to the success of some of the top-ranking algorithms is the use of network ensembles. 

The winning team used an ensemble of a network trained on standardized whole-slide images and a network trained 

on original whole-slide images to report the probabilities for each finding. The first submission of this team, HMS & 

MIT (I), ranking fifth, used an ensemble of two networks (networks trained before and after hard-negative mining).  

To generate a slide based score for the second task, the majority of the teams assigned the maximum probability 

among the detected lesions in the whole-slide image as the confidence score for that slide. Prior to this assignment, 

they mostly removed small areas of positive findings, and/or applied Gaussian/median filtering. Although this 

approach worked well for many of the teams, including CU-Lab (III) and ExB research that were ranked fourth and 

sixth in the image classification task, it may not take into account metastases characteristics (e.g. slides containing 

multiple high-score findings or slides containing larger metastases could have increased chance of containing 

metastases). In contrast, the systems HMS & MIT (I & II) used a random forest classifier employing a variety of 

geometrical and morphological features extracted from each probability map. Details of these features can be found 

in eMethods. The use of a learning-based algorithm to produce a confidence score from a whole-slide image 

probability map is likely the centerpiece of this algorithm that makes it the top-performing system for the first task.  

Finally, one interesting property of the top-performing system HMS & MIT (II) in the metastasis identification task 

is that it uses the output of the discriminative classifier that produces a slide-based confidence score, to weigh the 

score of each finding in the second task. This top-down analysis reduces the number of false-positives, particularly 

in normal slides. 
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