2,217 research outputs found

    Bump Bonding Using Metal-Coated Carbon Nanotubes

    Get PDF
    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases

    Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    Get PDF
    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles

    Comparison of Time Domain Reflectometry Performance Factors for Several Dielectric Geometries: Theory and Experiments

    Full text link
    We propose three nontraditional dielectric geometries and present an experimental and theoretical analysis and comparison of time domain reflectometry (TDR) performances for them. The traditional geometry (the probes inserted in material of essentially infinite extent) is compared to three nontraditional geometries where the probes are affixed outside of a core sample, inside of a bore, or flat on the surface of a semi‐infinite solid. Our derivation relates the velocity of electromagnetic wave propagation to the complex permittivities and permeabilities of the media and the geometry for the three nontraditional configurations. Experimental results for air, styrofoam, dry sand, wet sand of varying water content, nylon, dry wood, and ferromagnetic steel are obtained for the three proposed configurations and are in fair agreement with the literature within the experimental uncertainties. Through experiments and theoretical analysis, the TDR performance is found to be the same within the experimental uncertainties for the three nontraditional geometries. The proposed geometries yield slightly lower sensitivities compared to the traditional geometry. Advantages and disadvantages of the geometries compared to the traditional geometry are also discussed

    The Mesozoic along-strike tectono-metamorphic segmentation of Longmen Shan (eastern Tibetan plateau)

    Get PDF
    The Longmen Shan belt (eastern border of the Tibetan plateau) constitutes a tectonically active region as demonstrated by the occurrence of the unexpected 2008 Mw 7.9 Wenchuan and 2013 Mw 6.6 Lushan earthquakes in the central and southern parts of the belt respectively. These events revealed the necessity of a better understanding of the long‐term geological evolution of the belt and its effect on the present dynamics and crustal structure. New structural and thermobarometric data offer a comprehensive dataset of the paleo‐temperatures across the belt and P‐T estimates for low‐grade metamorphic domains. In the central Longmen Shan, two metamorphic jumps of 150‐200°C, 5‐6 kbar and ~50 °C, 3‐5 kbar acquired during the Early Mesozoic are observed across the Wenchuan and Beichuan faults respectively, attesting to their thrusting movement and unrevealing a major decollement between the allochtonous Songpan‐Garze metasedimentary cover (at T > 500°C) and the autochtonous units and the basement (T < 400°C). In the southern Longmen Shan, the only greenschist‐facies metamorphism is observed both in the basement (360 ± 30°C, 6 ± 2 kbar) and in the metasedimentary cover (350 ± 30°C, 3 ± 1 kbar). Peak conditions were reached at c. 80‐60 Ma in the basement and c. 55‐33 Ma in the cover, c. 50 Ma after the greenschist‐facies metamorphic overprint observed in the central Longmen Shan (c. 150‐120 Ma). This along‐strike metamorphic segmentation coincides well with the present fault segmentation and reveals that the central and southern Longmen Shan experienced different tectono‐metamorphic histories since the Mesozoic

    Effect of Cu substitution on anion redox behaviour in P3-type sodium manganese oxides

    Get PDF
    This work was supported by the Faraday Institution (Grant No. FIRG018). The authors gratefully acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC), Grant Nos. EP/L017008/1, EP/R023751/1 and EP/T019298/1.Sodium layered oxides which display oxygen anion redox behaviour are considered promising positive electrodes for sodium-ion batteries because they offer increased specific capacities. However, they suffer from irreversible structural changes resulting in significant capacity loss and limited oxygen redox reversibility. Here the effect of Cu substitution on the electrochemical performance of P3-type sodium manganese oxide is examined by evaluating the structural and electronic structural evolution upon cycling, supported by density functional theory (DFT) calculations. Over the voltage range 1.8–3.8 V vs. Na/Na+, where the redox reactions of the transition metal ions contribute entirely towards the charge compensation mechanism, stable cycling performance is maintained, showing a capacity retention of 90% of the initial discharge capacity of 166 mA h g−1 after 40 cycles at 10 mA g−1. Over an extended voltage range of 1.8–4.3 V vs. Na/Na+, oxygen anion redox is invoked, with a voltage hysteresis of 110 mV and a greater initial discharge capacity of 195 mA h g−1 at 10 mA g−1 is reached. Ex-situ powder x-ray diffraction patterns reveal distortion of the P3 structure to P'3 after charge to 4.3 V, and then transformation to O'3 upon discharge to 1.8 V, which contributes towards the capacity fade observed between the voltage range 1.8–4.3 V. DFT with projected density of states calculations reveal a strong covalency between the copper and oxygen atoms which facilitate both the cationic and anionic redox reactions in P3-type Na0.67Mn0.9Cu0.1O2.Publisher PDFPeer reviewe

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individual
    corecore