915 research outputs found

    Digital marketing communications on the example of Huawei and Xiaomi companies

    Get PDF
    This article aims to provide a comprehensive analysis of the digital marketing strategies employed by two prominent technology companies, Huawei and Xiaomi. Utilizing a comparative framework, the study evaluates the similarities and differences in their digital marketing approaches, highlighting key aspects such as social media presence, content marketing, influencer collaborations, and customer engagement

    The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein

    Get PDF
    AbstractBackground: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α1∗–loop12–α2∗; where ∗ represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α3∗–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site

    Individual level microbial communities in the digestive system of the freshwater isopod Asellus aquaticus: Complex, robust and prospective

    Get PDF
    The freshwater isopod Asellus aquaticus is an important decomposer of leaf detritus, and its diverse gut microbiome has been depicted as key contributors in lignocellulose degradation as of terrestrial isopods. However, it is not clear whether the individual‐level microbiome profiles in the isopod digestive system across different habitats match the implied robust digestion function of the microbiome. Here, we described the bacterial diversity and abundance in the digestive system (hindgut and caeca) of multiple A. aquaticus individuals from two contrasting freshwater habitats. Individuals from a lake and a stream harboured distinct microbiomes, indicating a strong link between the host‐associated microbiome and microbes inhabiting the environments. While faeces likely reflected the variations in environmental microbial communities included in the diet, the microbial communities also substantially differed in the hindgut and caeca. Microbes closely related to lignocellulose degradation are found consistently more enriched in the hindgut in each individual. Caeca often associated with taxa implicated in endosymbiotic/parasitic roles (Mycoplasmatales and Rickettsiales), highlighting a complex host–parasite–microbiome interaction. The results highlight the lability of the A. aquaticus microbiome supporting the different functions of the two digestive organs, which may confer particular advantages in freshwater environments characterized by seasonally fluctuating and spatially disparate resource availability

    Promoter keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification

    Get PDF
    Non-invasive epigenome editing is a promising strategy for engineering gene expression programs, yet potency, specificity, and persistence remain challenging. Here we show that effective epigenome editing is gated at single-base precision via 'keyhole' sites in endogenous regulatory DNA. Synthetic repressors targeting promoter keyholes can ablate gene expression in up to 99% of primary cells with single-gene specificity and can seamlessly repress multiple genes in combination. Transient exposure of primary T cells to keyhole repressors confers mitotically heritable silencing that persists to the limit of primary cultures in vitro and for at least 4 weeks in vivo, enabling manufacturing of cell products with enhanced therapeutic efficacy. DNA recognition and effector domains can be encoded as separate proteins that reassemble at keyhole sites and function with the same efficiency as single chain effectors, enabling gated control and rapid screening for novel functional domains that modulate endogenous gene expression patterns. Our results provide a powerful and exponentially flexible system for programming gene expression and therapeutic cell products

    Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence

    Get PDF
    Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.Comment: 16 pages, 7 figures, published in ApJ. Reformatted preprint with emulateap

    Unsupervised system to classify SO2 pollutant concentrations in Salamanca, Mexico

    Get PDF
    Salamanca is cataloged as one of the most polluted cities in Mexico. In order to observe the behavior and clarify the influence of wind parameters on the Sulphur Dioxide (SO2) concentrations a Self-Organizing Maps (SOM) Neural Network have been implemented at three monitoring locations for the period from January 1 to December 31, 2006. The maximum and minimum daily values of SO2 concentrations measured during the year of 2006 were correlated with the wind parameters of the same period. The main advantages of the SOM Neural Network is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. For each monitoring location, SOM classifications were evaluated with respect to pollution levels established by Health Authorities. The classification system can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction

    Metastable Pluripotent States in NOD Mouse Derived ES Cells

    Get PDF
    Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors.National Institutes of Health (U.S.) (Grant RO1-HDO45022)National Institutes of Health (U.S.) (Grant R37-CA084198)National Institutes of Health (U.S.) (Grant RO1-CA087869

    De novo design of protein logic gates

    Get PDF
    The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions
    corecore