7 research outputs found
Pretreating anaerobic fermentation liquid with calcium addition to improve short chain fatty acids extraction via in situ synthesis of layered double hydroxides
In situ synthesis of layered double hydroxides (LDHs) was proved to be an effective way to extract short chain fatty acids (SCFAs) from anaerobic fermentation liquid (AFL) as carbon source for biodenitrification, but the SCFAs content in SCFAs-LDH was unsatisfactory because of the existence of much carbonate in AFL. Pretreatment of AFL with calcium addition was investigated to remove carbonate and improve SCFAs extraction via LDHs synthesis. Results of batch tests showed that, the carbonate removal efficiency was as high as 76.6% when the calcium addition was 0.06 mol/L at pH 12. When using the optimal SCFAs/Al3+ ratio of 3.0, the total SCFAs content in SCFAs-LDH with pretreatment was improved to 46.5 mg COD/g LDH, which was 4.5 times of the control (10.4 mg COD/g LDH). These results suggest that adding calcium to AFL was an effective way to eliminate the negative effect of carbonates on SCFAs-LDH synthesis
Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review
Anaerobic digestion is an effective technology to treat food waste, with methane production as renewable bioenergy. However, there are two key problems in the practical application, i.e., poor system stability and low reactor efficiency. In this paper, additives used in anaerobic digestion of food waste were systematically reviewed in view of system stability and reactor efficiency. Enzymes showed excellent property in food waste pre-hydrolysis stage with almost all macromolecular matters being rapidly resolved. Fungi fermentation process to produce hydrolytic enzymes, can be regarded as a promising and low-cost way to realize rate-limiting step elimination. It can be also concluded that adding neutralizers, buffer chemicals and some other materials are effective to maintain the pH level for practical application. Trace metals in food waste are not enough but needed for methanogens activation in long term and high loading rate operation. In addition, direct interspecies electron transfer could be much helpful for intermediate refractory organic acids degradation and methanogenesis promotion with additives of conductive materials, which is also discussed and should be studied further in anaerobic digestion of food waste. Based on literature review, a new concept is proposed for further study, suggesting that after being well liquefied with enzyme pre-hydrolysis, food waste could be co-digested with landfill leachate in a high-rate anaerobic reactor stably, resulting in a high bioenergy recovery efficiency. (C) 2018 Elsevier Ltd. All rights reserved
Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction
Iron is widely used in sewage treatment systems and enriched into waste activated sludge (WAS), which is difficult and challenging to phosphorus (P) release and recovery. This study investigated simultaneous release performance of polyphosphate and iron-phosphate from iron-rich sludge via anaerobic fermentation combined with sulfate reduction (AF-SR) system. Batch tests were performed, with results showing that AF-SR system conducted a positive effect due to the relatively low solubility of ferrous sulfide in comparison with ferric phosphate precipitates. Simulation study was performed to investigate the total P release potential from actual waste activated sludge, finding that about 70% of the total P could release with the optimized pH of 7.0-8.0 and the theoretical S2-/Fe2+ molar ratio of 1.0. A potential new blueprint of a wastewater treatment plant based on AF-SR system, towards P, N recovery and Fe, S, C recycle, was finally proposed