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20 ABSTRACT

21 Anaerobic digestion is an effective technology to treat food waste, with methane 

22 production as renewable bioenergy. However, there are two key problems in the 

23 practical application, i.e., poor system stability and low reactor efficiency. In this paper, 

24 additives used in anaerobic digestion of food waste were systematically reviewed in 

25 view of system stability and reactor efficiency. Enzymes showed excellent property in 

26 food waste pre-hydrolysis stage with almost all macromolecular matters being rapidly 

27 resolved. Fungi fermentation process to produce hydrolytic enzymes, can be regarded as 

28 a promising and low-cost way to realize rate-limiting step elimination. It can be also 

29 concluded that adding neutralizers, buffer chemicals and some other materials is 

30 effective to maintain the pH level for practical application. Trace metals in food waste 

31 are not enough but needed for methanogens activation in long term and high loading 

32 rate operation. In addition, direct interspecies electron transfer could be much helpful 

33 for intermediate refractory organic acids degradation and methanogenesis promotion 

34 with additives of conductive materials, which is also discussed and should be studied 

35 further in anaerobic digestion of food waste. Based on literature review, a new concept 

36 is proposed for further study, suggesting that after being well liquefied with enzyme 

37 pre-hydrolysis, food waste could be co-digested with landfill leachate in a high-rate 

38 anaerobic reactor stably, resulting in a high bioenergy recovery efficiency.

39 Keywords: food waste; additives; enzymes; trace metals; co-digestion; direct 

40 interspecies electron transfer

41
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42  

Abbreviation
FW
AD
DIET
TMs
VFAs
OLRs
TS
VS
VSS
SSF
FANs
LCFAs
UASB
EGSB
IC
ZVI
C/N
GAC
COD
ΔG°′
LL

Food waste
Anaerobic digestion 
Direct interspecies electron transfer 
Trace metals 
Volatile fatty acids
Organic loading rates
Total solid
Volatile solid
Volatile suspended solid
Solid-state fermentation
Free amino acids 
Long chain fatty acids
Upflow anaerobic sludge blanket
Expanded granular sludge bed
Inner circulation
Zero-valent iron
Carbon/nitrogen
Granular activated carbon
Chemical oxygen demand
Standard free energy change
Landfill leachate
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43 1. Introduction

44 It is well known that food waste (FW) is a high moisture content and easily 

45 biodegradable biomass, and bioconversion process is a mainstream method to minimize 

46 waste and realize bioenergy recovery simultaneously (Chen et al., 2017; Karmee, 2016; 

47 Kuruti et al., 2017). In 2012, over 1.6 billion tons of FW was generated worldwide (Ma 

48 et al., 2017a). The amount of FW is growing by 44% from 2005 to 2025 due to rapid 

49 urban development (Capson-Tojo et al., 2016; Karmee, 2016). In China, FW production 

50 could be as high as approximately 1.4×108 tons per year in 2020, which is equivalent to 

51 10 million tons of coal based on energy conversion by electricity production (Pham et 

52 al., 2015; Zhang et al., 2016). Thus, it is urgent to find the right way to manage the 

53 increasing FW properly and improve the energy recovery efficiency, from the cleaner 

54 production view (Han et al., 2016a).

55 Anaerobic digestion (AD) is a popular technology applied all over the world to 

56 produce bioenergy (Thi et al., 2016; Uçkun Kiran et al., 2014; Yan et al., 2016), but 

57 there are two key problems that limit its practical application in FW treatment. One is 

58 the poor system stability due to the accumulation of volatile fatty acids (VFAs); the 

59 other is the low reactor efficiency, that is, low organic loading rates (OLRs) (Braguglia 

60 et al., 2018; De Clercq et al., 2016; Zhang et al., 2014). This is mainly because of the 

61 high content of easily biodegradable suspended solids in FW, which is very different 

62 from other wastes and wastewaters. Numerous studies were performed on how to 

63 improve the stability and efficiency of FW anaerobic digestion, including additives, pre-
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64 treatments, co-digestion with other wastes, innovative digesters, and exploration of 

65 different operational conditions (e.g. temperature, retention time, and recirculation) (Li 

66 et al., 2017; Xiao et al., 2015; Zamanzadeh et al., 2016). 

67 A few recently published review papers on enhancement of methane production 

68 from FW focused on pre-treatments, co-digestion, inhibitory factors (e.g. 

69 carbon/nitrogen (C/N) ratio, VFAs, ammonia, and environmental conditions), anaerobic 

70 reactors, microbial characteristics (Ren et al., 2018; Wang et al., 2018; Zhang et al., 

71 2017). These review papers gave important specific information of research progress on 

72 anaerobic digestion of FW. However, this paper focuses on solving the two key 

73 problems of FW anaerobic digestion using additives to improve the system stability and 

74 reactor efficiency, based on literature review and our previous study. Though the 

75 concept of additives to general AD system had been already putted forward by Romero-

76 Güiza et al. (2016), but it is very different in AD system treating FW (high solid 

77 content, easily degradable organic, acids accumulation, lack of nutrients, low energy 

78 conversion efficiency) from general systems (Li et al., 2018a).

79 Firstly, this paper is to summarize the use of additives to enhance methane 

80 production from FW based on: (i) promoting hydrolysis; (ii) adding 

81 neutralizer/bicarbonate/buffer materials to maintain a stable pH; (iii) adding trace metals 

82 (TMs) and novel additive materials to support microbial metabolism and promote 

83 microbe colonization. Based on the review and discussion, co-digestion of FW (pre-

84 hydrolysed with enzyme) and landfill leachate in high-rate reactor is proposed as a 
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85 promising way to improve the system stability and reactor efficiency of FW anaerobic 

86 digestion.

87 2. Methods

88 The literature used in this review, was collected from the online data bases of 

89 Science Direct and Web of Science via keyword research. Various keyword groups 

90 were comprised of several words including food waste, kitchen waste, anaerobic 

91 digestion, fermentation, biogas, and biomethane. Based on the analysis of the obtained 

92 papers, it was summarized that the characteristics of FW always cause poor system 

93 stability and low reactor efficiency of FW anaerobic digestion. In particular, among 

94 literatures, adding some exogenous substances including inorganic, organic, and 

95 biological matters has been widely studied to solve the above-mentioned problems. Fig. 

96 1 exhibits the function of some mainly used additives during different AD stages (i.e. 

97 hydrolysis, acidogenesis, methanogenesis). The detail information of using additives to 

98 improve methane production from FW is to be discussed on the following sections.    

99 3. Additives to promote rate-limiting hydrolysis

100 Food waste is rich in carbohydrates, proteins, and lipids, with a biochemical 

101 methane potential of approximately 460 ml CH4/g VS (Browne and Murphy, 2013; 

102 Capson-Tojo et al., 2016). However, most of the organic contents in FW are suspended 

103 solids, which cause inefficient (low) methane production (Zhang et al., 2014). 

104 Hydrolysis is considered to be the rate-limiting step. Numerous pre-treatment methods, 

105 including thermal/hydrothermal (Ding et al., 2017), ultrasonic (Elbeshbishy and Nakhla, 
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106 2011), alkali or acid (Zhao et al., 2011), autoclaving (Tampio et al., 2014), microwaving 

107 (Shahriari et al., 2013), freezing/thawing (Stabnikova et al., 2008b), micro aeration 

108 (Rafieenia et al., 2017), and high voltage pulse discharge (Zou et al., 2016), were 

109 studied to promote FW hydrolysis and thus enhance methane production. Nevertheless, 

110 the application of these methods is restricted because of factors including by-products 

111 (e.g. furfural) generated during the pre-treatment process and impractical additional 

112 costs. Compared with physical or chemical pre-treatment methods, the use of bio-

113 additives is relatively harmless, clean, and efficient. Bio-additives play biological role 

114 similar to enhanced fermentative bacteria in hydrolysis. Presently, studies mainly focus 

115 on enzymes and fungal mash.

116 3.1 Enzymes

117 Enzyme, as a kind of exoenzyme, can help convert macromolecule solids to 

118 soluble micro molecule matter (Han et al., 2015). In fact, enzyme additives have been 

119 applied successfully in lactic acid and alcohol fermentation using FW (Tashiro et al., 

120 2013; Yan et al., 2011). Protease and amylase additives were also used to enhance the 

121 solubilisation of waste activated sludge by 39.7% and 54.2%, respectively (Yang et al., 

122 2010). It can be concluded that enzyme additives are more effective for FW than for 

123 waste activated sludge, because it is more difficult to break bacterial cell walls 

124 (Parawira, 2012). 

125 3.1.1. Specific role of enzymes for different FW components

126 Different FW components, such as starches, proteins, and lipids, can be 
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127 disintegrated into glucose, free amino acids (FANs), and long chain fatty acids (LCFAs) 

128 by the corresponding enzymes (Yan et al., 2011). 

129 About 55-65% of the total FW organic solid is starch (Ma et al., 2017a). Starch can 

130 be converted to glucose firstly and then to methane and carbon dioxides finally. Hence, 

131 starch is the most important component in FW for methane production. In the 

132 hydrolysis of starch, α-amylase/glucoamylase addition could help to break glucosidic 

133 bonds and thus improve the hydrolysis effect. For instance, Han et al. (2016c) 

134 investigated the starch conversion rate was 68.1%-96.2% with glucose production by 

135 0.307-0.434 g glucose/g FW under enzyme pre-hydrolysis. 

136 Macromolecule protein is another noteworthy matter in FW. Protease was proved 

137 to be effective to decompose protein structure with peptide links being broken during 

138 hydrolysis (Han et al., 2016b). The hydrolysate of proteins, which contain several 

139 FANs, could be broken down further into organic acids and ammonia via deaminase 

140 secreted by fermentative bacteria (Xiao et al., 2014). Therefore, using protease as an 

141 additive improves hydrolysis rate and enhances methane production (Moon and Song, 

142 2011). Furthermore, proteins are the sole nitrogen source as nutrient of methanogen in 

143 anaerobic digestion of FW. In fact, much of the nitrogen from proteins is converted to 

144 ammonia, which is particularly important for pH self-balance of AD system treating FW 

145 (Ariunbaatar et al., 2015; Qiang et al., 2012). Therefore, using protease as an additive 

146 could accelerate the release of ammonia and timely answer the acidification of FW.

147 Lipids have a high theoretical methane potential and could consequently increase 
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148 biogas production (Parawira, 2012), but they have been identified as the main 

149 contributor to lag for a low hydrolysis rate. A previous study showed that the lag phase 

150 of wastes rich in lipids was about 20.2–48.7 d. This was much longer than that of other 

151 wastes (about 14.9–19.9 d) (Lou et al., 2012). A study by Meng et al. (2015) showed 

152 that FW in China (rich in lipids such as floatable grease from animal fat and vegetable 

153 oil), could greatly benefit from lipase additive during hydrolysis, with methane 

154 production increase of 37.0–40.7% in digestion time of 10–40 d (Meng et al. (2017).

155     The three kinds of solid organics, i.e., starches, proteins and lipids, are always 

156 occupy most content of FW simultaneously. Therefore researchers investigated the 

157 effect of adding multiple enzymes (α-amylase/glucoamylase, protease, and lipase) on 

158 FW hydrolysis and found that it was an effective strategy to improve methane 

159 production (Kim et al., 2006). However, the optimal conditions and dosage ratio of 

160 these enzymes need to be confirmed case by case, using effect analyses methods, such 

161 as response surface analysis (Yan et al., 2011).

162 3.1.2. Solid organics liquification for possible methane production in high rate 

163 reactors

164 It is worth noting that enzyme additives could not only accelerate hydrolysis rates, 

165 but also liquify FW by eliminating the solid contents. It was reported that enzyme 

166 additives were used to reduce volatile suspended solids (VSS) by 52.1–61.0% through 

167 hydrolysis (Kim et al., 2006; Moon and Song, 2011). At the same time, FW liquification 

168 could also bring further improvements on methane production (Shin et al., 2001; 
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169 Stabnikova et al., 2008a). 

170 The type of AD reactor, which is restricted by the high levels of suspended solids 

171 in FW (~20%), limits AD efficiency greatly with a low OLR. All reported AD processes 

172 of FW were performed in continuous stirred-tank reactors with OLRs of 1–9.2 g VS/L.d 

173 (Nagao et al., 2012; Wang et al., 2014b). Given that the addition of enzymes increase 

174 FW liquification, a breakthrough idea came into mind that high-rate anaerobic reactors 

175 (those with OLRs of 10–30 g VS/L.d), such as upflow anaerobic sludge blanket 

176 (UASB), expanded granular sludge bed (EGSB), and internal circulation (IC) reactors 

177 could be applied for FW. Till now, only FW supernatant from enzyme hydrolysis or 

178 fermentative leachate were treated for methane production in high-rate AD reactors 

179 (Browne and Murphy, 2014; Wu et al., 2016). No study has tried to introduce liquefied 

180 FW, including supernatants and residue solids, into a high rate AD reactor.

181 Existing research was paused at optimal pH levels, temperatures, and dosage ratios 

182 because of the exorbitant cost of commercial enzymes, which was a primary obstacle 

183 (Parawira, 2012). Enzyme additives are not currently widely used in biological 

184 processes because they are expensive. Therefore, cheap sources of enzymes need to be 

185 studied in future research on the application of enzyme additives. Furthermore, 

186 enzymatic hydrolytic reaction is efficient in time (less than 24 h) under a suitable 

187 environment. Hence, enzyme is usually added into FW before AD, and regarded as a 

188 pre-treatment process for feedstock. Whereas, additive is a more appropriate position 

189 for enzyme because the method of directly added into the anaerobic digester is 
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190 convenience for practical engineering (Meng et al., 2015). Maintaining the high activity 

191 of enzyme additives in digester with dynamic condition changes, could be a further 

192 research trend.

193 3.2 Fungal mash

194 Fungal mash, which is rich in exoenzyme secretions and can be produced via the 

195 fungi solid-state fermentation (SSF) bioprocess, could be used as a crude enzyme 

196 cocktail for FW hydrolysis (Han et al., 2016c; Melikoglu et al., 2013b). Lin et al. (2013) 

197 adopted fungal mash to turn FW into a form available for microbes to use directly, 

198 which could also be valuable feedstock to produce chemicals, materials, and fuels. In 

199 terms of FW anaerobic digestion, Kiran et al. (2015) and Yin et al. (2016) found that 

200 fungal mash containing significant glucoamylase and protease could be obtained if 

201 Aspergillus awamori were used in an SSF process on the surface of waste cake. Kiran et 

202 al. (2015) got significant results when using fungal mash as an additive for methane 

203 production from FW, ultimately reducing VSS by 64% during hydrolysis and removing 

204 80.4% of the total volatile solids (VS). Pleissner et al. (2014) got 80–90% of solid 

205 wastes reduction during hydrolysis using a fungal mash from the SSF of A. awamori 

206 and A. oryzae with blended FW. It can be concluded that, compared with commercial 

207 enzymes alone, fungal mash was more efficient due to its multiple enzymes 

208 composition.

209 The low cost of fungal mash increases its prospect of being applied broadly, such 

210 as simultaneous biogas and biofertilizer production from hydrolysate and residue solids, 
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211 respectively (Ma et al., 2017b, c). Nevertheless, it is noted that the production of fungal 

212 mash by SSF increased the complexity of AD, with the reaction time taking as long as 

213 approximately 6 d (Melikoglu et al., 2013a). However, fungal mash is certain to be a 

214 good alternative for commercial enzyme, because of cheap cost, practical use, and high 

215 energy recycle value. Much attention should be paid to optimise SSF process in future 

216 study. 

217 4. Additives used to maintain pH stability

218 Anaerobic digestion of FW alone is unstable and often fails, mainly because excess 

219 organic acids accumulate during the acidogenesis stage. It results in rapid pH decrease 

220 and further inhibition of methanogenic activity (Fisgativa et al., 2016). In general, pH 

221 intuitively represents how the dynamic variation of VFAs in a reactor affects AD 

222 efficiency. In addition, pH levels play a vital role in regulating the activity of microbes 

223 including acidogens (which have a large pH range of 4.0–8.5) and methanogens (with a 

224 limiting pH range of 6.5–7.2 and an optimum pH of 7.0) (Sen et al., 2016; Zhang et al., 

225 2014). Therefore, acidogens can ‘trim the sails’, with pH variations relying on microbial 

226 adaptation. For instance, a pH level of 6.0 was optimal to produce VFAs in which 

227 concentrations of butyrate acid and acetate acid were dominant, while pH 8.0 was 

228 controlled for the production of propionic acid (Chen et al., 2013; Wang et al., 2014a).

229 In contrast, because methanogens are sensitive with a narrow pH range, the process 

230 of VFAs consumption could be easily ceased when pH levels drop to 6.5 or lower. 

231 However, acidogens can still produce acidic intermediates, leading to the accumulation 
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232 of VFAs. Therefore, many researchers investigated the performance of multiple 

233 additives such as neutralizers, bicarbonates, and buffer material (i.e. zero-valent iron 

234 (ZVI)) to maintain the pH stability of AD system treating FW.

235 4.1 Sodium hydroxide as neutralizer

236 Adding a neutralizer (e.g. sodium hydroxide) into AD system was identified as an 

237 effective method to control the system pH directly and immediately. First, the pH of the 

238 FW substrate sometimes needs to be adjusted to neutral when it is around 4.3–4.5 due to 

239 the background production of lactic acid and VFAs (Chen et al., 2014c; Kim et al., 

240 2016). After that, there is remarkable acidification in AD system in the first 2 days, 

241 especially when the reactor is operated with a high OLR. Wang et al. (2016) reported an 

242 innovative pH adjustment program to achieve high VS removal rates using low levels of 

243 neutralizer. During the first 2 days, the pH was adjusted once every 16 h, and then once 

244 per day at pH 7, with the final VS removal rate of 54.0%. Yang et al. (2015) proved the 

245 feasibility of controlling the pH at 8 within the first 5 days to avoid acidification in a 

246 thermophilic AD system using FW with a high content of suspended solids, and got 

247 7.57 times increase of total methane production. Adding neutralizers to recover stable 

248 pH for anaerobic digestion of FW is a usually inevitable strategy in practical 

249 engineering.

250 4.2 Bicarbonate as buffer

251 Bicarbonates like NaHCO3 are often recommended to cushion organic acids and 

252 maintain appropriate pH levels during AD processes. Compared to neutralizers, adding 
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253 bicarbonates can achieve equivalent function with only one-time addition, and thus is 

254 widely used as a conventional pH control strategy. Gao et al. (2015) found that 1,000 

255 mg/L of NaHCO3 addition enhanced the specific methane production by 48.5% treating 

256 residue solid kitchen waste. Nonetheless, the effect of NaHCO3 could only be 

257 highlighted with a low inoculum to substrate ratio. In fact, bicarbonates could not only 

258 be used as an alternative emergency strategy, like a neutralizer, but also increase system 

259 alkalinity and thus promote the self-balancing of pH levels.

260 Ammonia nitrogen, generated from the protein component of FW along with 

261 anaerobic fermentation, was found to act as a good buffer and help the system pH self-

262 balance greatly. Therefore, the potential for pH self-balance based on ammonia nitrogen 

263 release in later stage (i.e., the rational C/N ratio in initial feedstock), is crucial to 

264 determine parameters such as the required neutralizer or buffer dosage and the 

265 frequency of addition. Apparently, the pH self-balance of AD system depending on FW 

266 characters greatly, need to be considered at first. 

267 4.3 Zero-valent iron

268 Zero-valent iron (ZVI) is a novel additive to AD systems and could restore 

269 excessive acidification and alleviate low pH through the following pathways: (i) 

270 consuming H+ by ZVI reducibility, as shown in (Eq. (1)) (Daniels et al., 1987); (ii) 

271 stimulating performance of microbial metabolism by iron (Hao et al., 2017); and (iii) 

272 causing a low oxidation-reduction potential (E0 = -440 mV) that is beneficial for acetic 

273 acid production and butyric, propionic acid conversion (Xiao et al., 2013).
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274 To eliminate H+, Kong et al. (2016) investigated two types of ZVI (powder and 

275 scrap metal); both restrained excessive acidification. With the addition of 0.4 g/g 

276 VSFWadded of ZVI to an AD system, the pH of the effluent was 7.8–8.2; without the 

277 additive, the pH was close to 5.3. Notably, a delayed recovery period occurred, 

278 corresponding to the ZVI dosage, instead of the rapid additive response expected. Yu et 

279 al. (2015) found that adding Fe3+ to an AD 72 h after start-up could avoid excess 

280 acidification. Furthermore, propionic, butyric acid excessively accumulation is a factor 

281 causes low pH condition, and also could be alleviated by ZVI addition which function 

282 on oxidation-reduction potential change (Feng et al., 2014; Kong et al., 2016). In 

283 addition, Kong et al. (2018) proved that ZVI addition was beneficial for dominant 

284 microbial species conversion from Methanosaeta to Methanofollis and Methanosarcina, 

285 which relieved the accumulation of non-acetic VFAs.

286 ZVI + 2H+ + CO2 → Fe2+ + CH4 + H2O                                    (1)

287 In general, sudden pH decreasing is a common phenomenon and is difficult to 

288 recover for both laboratory experiment and practical engineering. Neutralizers and 

289 bicarbonates are both useful for immediately transform of excess acidification. 

290 However, the negative effects of using neutralizer and buffer are: (i) the agents are not 

291 cheap, suitable dosage and feeding model are still uncertain, and excess heat will release 

292 during adding step and may cause activity inhibition of microbes; (ii) the recyclable 

293 disposal of biogas residue and slurry will be influenced by additives with further salinity 

294 enhancement. In contrast, adding ZVI to avoid acidification outburst could be a green, 
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295 clean and economic way for anaerobic digestion of FW. For instance, waste iron scraps 

296 from industrial residue have been studied as potentially facilitating VFAs 

297 generation/translation and methane production. Furthermore, utilizing waste iron in AD 

298 system is beneficial for the value of waste recycling accomplish and both biogas residue 

299 used as soil amendment.

300 5. Trace metals as supplement micronutrients

301 Micronutrients are important to maintain microbe activity and the smooth 

302 operation of metabolic pathways (Chen et al., 2008). Consequently, the threshold, 

303 stimulation, or limitation of microbe micronutrient concentrations is also important. 

304 However, the accurate scope of different nutrients are still not fully realized (Choong et 

305 al., 2016). In numerous cases, a common unstable phase appeared in long term 

306 anaerobic digestion of FW, so that methanogenesis declined and VFAs gradually 

307 accumulated. The crisis can be solved efficiently with the addition of specific TMs, and 

308 the methane production can be recovered or even increased (Menon et al., 2017; Zhang 

309 and Jahng, 2012; Zhang et al., 2015a). The mechanism and function of TMs in AD were 

310 wildly studied, and the method of addition usage was also exploited, which is crucial for 

311 actual application.

312 5.1 The required trace metals

313 Specific TMs (Fe, Co, Ni, Se, and Mo) are basic metalloenzyme elements that 

314 control the processes of acetogenesis and methanogenesis. Hydrogenase (containing Fe 

315 and/or Ni) and formate dehydrogenase (containing Fe, Se, and Mo) are two typical 
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316 enzymes that release electron from H2 and HCOOH respectively (Banks et al., 2012; 

317 Choong et al., 2016). Iron is an important component of ferredoxin, which participates 

318 in electron transport, for example in coenzyme F420 (Menon et al., 2017). Cobalt has an 

319 impact on the activity of methyl transferase, which is a part of methyl transport 

320 (Schattauer et al., 2011). Moreover, nickel not only forms carbon monoxide 

321 dehydrogenase to take part in aceticlastic and acetogenic reactions, but also serves as a 

322 core element for coenzyme F430, which plays an important role in autotrophic 

323 methanogenesis (Choong et al., 2016; Takashima et al., 1990; Zhang et al., 2015c).

324 Generally speaking, conventional elements (e.g. K, Ca, and Mg) are abundant in 

325 FW, but several specific elements (i.e. Fe, Co, Ni, Se, and Mo) are generally not 

326 enough. As summarized in Table 1, the Fe content in FW (7.17–230.7 mg/kg TS) is 

327 higher than that of Co (0.05–0.66 mg/kg TS), Ni (0.42–9.12 mg/kg TS), Se (0.07–0.6 

328 mg/kg TS), and Mo (0.057–1 mg/kg TS). The requirement of TMs to be present in a 

329 glucose medium has been investigated by Takashima et al. (2011). More TMs were 

330 needed under thermophilic conditions than under mesophilic conditions, i.e., 0.45 vs 0.2 

331 mg/g chemical oxygen demand (COD) removed for Fe, 0.054 vs 0.017 mg/g COD 

332 removed for Co and 0.049 vs 0.0063 mg/g COD removed for Ni, respectively. The 

333 homologous conversion index of the background TMs level in FW is lower than the 

334 threshold. Usually, the inoculum of sludge from a municipal wastewater treatment plant 

335 or laboratory-scale AD reactor contains abundant concentrations of needed TMs (Table 

336 1), and guarantees the early stabilization of the AD reactor. The lack of TMs in 
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337 substrate will appear in a long-term process, with methane production subdued. Hence, 

338 an extra supplement of TMs for anaerobic digestion of FW makes a noticeable attention.

339 In addition, the process of precipitation and dissolution of TMs in complex system 

340 of AD, cannot be ignored which is closely connected for bioavailability. TMs present as 

341 free ions could easily bond with carbonate, phosphate, and sulphide to form precipitates, 

342 while soluble microbial products are likely to restrict freed TMs. For example, ferrous 

343 ion will combine with acetate into Fe(CH3COO)2 and Fe(OH)(CH3COO) (Thanh et al., 

344 2016; Yu et al., 2015). Whether such transformations are beneficial for TMs 

345 bioavailability and storage function, which permits TMs to be dissolved out, is not clear 

346 and needs further investigation. In practice, chelating agents like 

347 ethylenediaminetetraacetic acid and nitrilotriacetic acid are used to enhance TMs 

348 bioavailability in AD system (Hu et al., 2008; Pinto et al., 2014; Vintiloiu et al., 2013). 

349 On account of the bioavailability of additives and the environmental health risk, Zhang 

350 et al. (2015c) utilized the green chelating agent ethylenediamine-N,N'-disuccinic acid in 

351 batch and semi-continuous AD system experiments with FW. When 20 mg/L dose of 

352 chelating agent mixed into multi-TMs additives, the TMs dosage decreased by 50% of 

353 the optimum (Fe: 100 mg/L, Co: 1 mg/L, Mo: 5 mg/L, Ni: 5 mg/L) and resulted in a 

354 35.5% higher methane production compared to control. The rule of TMs utilization in 

355 anaerobic digestion of FW needs further study as effectively decreasing the cost of TMs 

356 agent for engineering application.



ACCEPTED MANUSCRIPT

19

357 5.2 Abundant metalloenzyme to improve system stability with high organic load 

358 rates

359 In order to get good effect, low OLRs (1–2 g VS/L.d) are always used at the very 

360 beginning to make AD system of FW stable. Higher OLRs (2–6.6 g VS/L.d) can be 

361 carried out step by step, till the system deteriorated or biogas production was shut off. 

362 Then, TMs can be added as additives to the multiplication of abundant metalloenzymes, 

363 which would enhance methanogenesis.

364 Zhang and Jahng (2012) successfully increased OLRs from 2.2 to 6.6 g VS/L.d 

365 during single-phase AD by holding the TMs concentration constant (Fe: 100 mg/L, Co: 

366 2 mg/L, Ni: 10 mg/L, Mo: 5 mg/L); nevertheless, the methane yield decreased from 450 

367 to 352 mL CH4/g VSadded. Here, the lack of critical elements like Se and Mo is 

368 considered. According to Facchin et al. (2013), methane production potential was 

369 enhanced by 30–40% under a Mo content of 3–12 mg/kg dry matter and an Se content 

370 of 10 mg/kg dry matter in batch tests. Similarly, Zhang et al. (2015a) found that despite 

371 a supplement of multiple TMs (Fe: 5 mg/L, Co: 1 mg/L, Ni: 1 mg/L), OLRs still rose at 

372 4.0 g VS/L.d as VFAs (30,000 mg/L) accumulated. The addition of an extra 0.2 mg/L of 

373 Se improved methane production to 465.4 mL CH4/g VSadded at an OLR of 5.0 g 

374 VS/L.d. Furthermore, Banks et al. (2012) managed an AD reactor with a high OLR and 

375 discovered that a low background level of Se and Co in FW underlined the significance 

376 of their role in oxidizing propionate using the syntrophic interspecies hydrogen transfer 

377 pathway with a high ammonia concentration. Fe is also a key factor in maintaining AD 



ACCEPTED MANUSCRIPT

20

378 system stability. Wei et al. (2014) found that sole-Fe additives could also improve 

379 conditions in which a reactor with an OLR of 4.5 g VS/L.d and regular doses of 

380 multiple TMs additives were used. In addition, the application of TMs additives in a 

381 two-phase AD system with high an OLRs was also studied; however, the contribution 

382 of the former to hydrolysis acidification, apart from their role in precipitating S2- in 

383 favour of terminal biogas purification, is still not fully understood (Menon et al., 2017; 

384 Voelklein et al., 2017).

385 Overall, the addition of proper amounts of deficient TMs to AD reactors, based on 

386 background levels of TMs in FW, could improve the metalloenzyme system and result 

387 in good AD performances with high OLRs. Nevertheless, precise dosages could not be 

388 determined because of variations in feedstock sources, operating conditions, and reactor 

389 structures. Despite this, the relationship between COD and quantity of TMs was 

390 surveyed. In thermophilic and mesophilic AD reactors with high OLRs, the value of 

391 Fe/COD, Co/COD, Ni/COD were different; 276, 4.96, and 4.43 mg/kg COD were 

392 removed, respectively, from the former; 200, 6.0, and 5.7 mg/kg COD were removed, 

393 respectively, from the latter (Qiang et al., 2012; Qiang et al., 2013). Using this 

394 information, the simulated TM concentrations could be Fe: 5–160 mg/L, Co: 1–10 

395 mg/L, Ni: 1–10 mg/L, Se: 0.2 mg/L, and Mo: 0.2–5 mg/L. These levels are lower than 

396 concentration limits. 

397 5.3 Co-digestion with other wastes

398 Co-digestion of FW with other wastes which are rich in TMs, could be an 
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399 advantageous alternative than using chemical agents. Anaerobic co-digestion of FW and 

400 sewage sludge is an accessible way. Full-scale AD of this co-substrate was early tested 

401 in the Europe, and its design and operation (e.g. mixture ratios, temperature, and OLRs 

402 etc.) was complex, unclear and more bench researches were proposed (Nghiem et al., 

403 2017). Koch et al. (2015) studied suitable mixture ratio in batch trials and obtained the 

404 highest methane yield and production rate at volatile solid-based mixture of FW to raw 

405 sludge ratio of 35%. However, Ratanatamskul et al. (2015) found the optimal value of 

406 FW to sewage sludge ratio was 7:1 in two-stage AD with total VS removal of 74% and 

407 total COD removal of 89%.

408 Adding landfill leachate (LL) to FW for anaerobic co-digestion could be another 

409 pregnant way to enhance the system stability and efficiency for bioenergy recycle. LL 

410 contains abundant TMs which could compensate the defect of FW and stimulate 

411 microbial activity. Liao et al. (2014) proved that co-digestion of FW and LL was better 

412 than FW mono-digestion for high stability with methane yield of 369–466 mL/g VS and 

413 FW degradation. In addition, Zhang et al. (2015b) found that co-digestion of FW with 

414 fresh leachate compensated for the deficiency of specific TMs (Fe, Co, Ni, and Mo), 

415 and acquired a stable methane yield (452.2–506.3 mL/g VSadded) at OLRs of 8.1–8.3 g 

416 VS/L.d. 

417 6. Functional materials as additives to improve methanogenesis

418 Recently, numerous studies in the literature concentrated on the role of functional 

419 materials to increase AD efficiency via enhanced methanogenesis. The stimulation was 
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420 comprehensively researched and used mainly the following two aspects: (i) colonization 

421 of various functional microbes to decrease lag time, and (ii) change of the finite 

422 interspecies electron transfer approach to direct interspecies electron transfer (DIET).

423 6.1 Carrier function to decrease lag time

424 Microbes colonized on carrier surfaces with biofilm promotion could be an 

425 excellent way to enrich microbes (Luo et al., 2015). Compared with traditional carriers 

426 (e.g. zeolite, clay, ceramic, and plastic materials), new materials (e.g. activated carbon 

427 and biochar) possess specific surface area, ample pores, and are widely researched as 

428 functional carriers for additives in AD processes (Bertin et al., 2010).

429 Xu et al. (2015) proved that different particle sizes (i.e., granular activated carbon 

430 (GAC) and powdered activated carbon) produced similar effects during AD of synthetic 

431 brewery wastewater: a shorter start-up time and accommodation of increased OLRs 

432 shock in UASB systems. Luo et al. (2015) explored the community distribution of those 

433 microbes in solution, tightly or loosely bound around biochar as a dynamic variation of 

434 OLRs change and biochar particle size, with the maximum methane production rate 

435 raise of 86.6%. Hence, it is clear that carbon-based carrier is benefit for microbe’s 

436 colonization and functional microbe’s enrichment to effectively response the acid-crisis 

437 conditions and promote methanogenesis (Wang et al., 2017).

438 Sunyoto et al. (2016) studied biochar addition to a two-phase AD system for FW 

439 and found that lag time for H2 and CH4 production decreased by 21.4–35.7% and 41-

440 45%, respectively, as both VFAs degradation and methane production potential were 
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441 enhanced. Cai et al. (2016) also demonstrated that adding biochar shortened the lag 

442 phase by 10.9%-20.0%, 43.3%–54.4%, and 36.3%–54.0%, at inoculum/substrate rate of 

443 2, 1, and 0.8, respectively. Actually, biogas production lag time decrease was not the 

444 key role of functional additives; on the contrary, domesticating sludge inoculum is 

445 efficient and could be an alternative. However, the effect of carrier additives like 

446 biochar on microbial metabolism is important and but less clear, which constrains the 

447 additives popularized in the anaerobic digestion of FW. The possibility that carriers are 

448 involved in stimulatory effects in addition to participating in methanogenesis, and the 

449 mechanism under which this could conceivably occur, will be shown in the following 

450 section.

451 6.2 Conductive function to promote direct interspecies electron transfer

452 Direct interspecies electron transfer, a new concept for electron transfer approach 

453 during these years, which is superior from the conventional H2 leaded electron transfer 

454 pathway that controlled via gas diffusion (Summers et al., 2010). Multiple lines of 

455 evidence suggested that conductive function is widely hypothesized to trigger metabolic 

456 approach evolution from finite interspecies electron transfer to DIET via conductive pili 

457 and c-type cytochrome (Stams and Plugge, 2009; Thauer et al., 2008). In AD systems, 

458 sludge aggregates are conductive owing to plentiful pili, which acted as a biological 

459 interspecies electric bridge in DIET for syntrophic microbes contact (Rotaru et al., 

460 2014a; Rotaru et al., 2014b). Interestingly, adding diverse conductive materials (e.g. 

461 GAC, carbon-cloth, biochar, carbon felt, graphite, and magnetite) could not only supply 
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462 sites for the sudden microbe colony, as previously mentioned, but also act as excellent 

463 electrical conduits to promote robust DIET (Chen et al., 2014a; Chen et al., 2014b; 

464 Dang et al., 2016). There is a proposition that a boost in DIET performance would be 

465 beneficial for the stability and efficiency improvement of anaerobic digestion of FW. 

466 Current research summarized in Table 2 speculated that the potential mechanism 

467 includes two aspects: (i) resisting acidic shock from excess propionate and butyrate 

468 accumulation, and (ii) shifting electron transfer pathway to enhance methanogenesis.

469 6.2.1 Acidic shock mitigation

470 Generally, propionate and butyrate accumulation are widespread and make 

471 methanogenesis of FW in AD reactors restricted. In a syntrophic metabolism system, 

472 the course in which propionate and butyrate are oxidized into acetate is prevented 

473 because of energetically adverse thermodynamics with standard free energy change 

474 (ΔG°′) of +76.0 kJ/mol, and ΔG°′ of +48.3 kJ/mol respectively under standard condition 

475 (i.e. substance at 1 mol/L, pH 7, and 25 °C) (Muller et al., 2010). However, DIET 

476 enhancement with conductive materials could resist acidic shock. For instance, carbon 

477 cloth supplement gave rise to faster butyrate utilization rate in AD of artificial 

478 wastewater (1-butanol) (Zhao et al., 2017b). Furthermore, Dang et al. (2016) discovered 

479 that enriched Sporanaerobacter, Enterococcus, and Methanosarcina species on the 

480 surface of carbon cloths resulted in faster system recovery when sour appeared during 

481 AD of FW surrogate. In the same way, Dang et al. (2017) investigated GAC, carbon 

482 cloth additives permitted normal operation of AD of kitchen waste, when VFAs reached 
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483 extremely high concentration (~500 mM).

484 6.2.2 Methane production improvement 

485 Inefficient OLRs limits on the anaerobic digestion of FW were discussed in the 

486 previous section. Nonetheless, the enhancement of DIET could be a new concept that 

487 inferred the permission of high OLRs reactors. Zhao et al. (2015) found that the AD 

488 behaviour of ethanol was stable with a supply of conductive materials, and that OLRs 

489 increased from 4.1 to 12.3 kg COD/m3.d in the UASB. In addition, the increased 

490 electron transfer efficiency is beneficial for methanogenesis because the electron could 

491 take part in CO2 reduction in direct pathway instead of by relatively long term H2 shift. 

492 For example, methane production was enhanced 12.9%–17.4% when carbon felt and 

493 GAC were added to the AD of sludge (Yang et al., 2017; Zhao et al., 2016). Li et al. 

494 (2018b) found that thermophilic co-digestion of FW and waste activated sludge could 

495 be facilitated via biochar addition which accompanied by the relative abundance of 

496 Syntrophothermus, Methanosaeta, and Methanosarcina increased from 3.6% to 4.7%, 

497 30.0% to 43.9%, and 11.1% to15.8%, respectively. Therefore, it is assumed that adding 

498 conductive materials to AD systems for FW could permit high OLRs and increase the 

499 efficiency of methane production.

500 To be sure, the specific impact on anaerobic digestion of FW using enhanced DIET 

501 with conductive materials was less researched. First of all, the analysis of Geobacter 

502 and Methanosaeta species (Zhao et al., 2017b), and Sporanaerobacter, Enterococcus, 

503 and Methanosarcina species (Dang et al., 2016; Dang et al., 2017) were confirmed for 



ACCEPTED MANUSCRIPT

26

504 syntrophic metabolism in the previous experiments. However, the underlying 

505 combination of microbial synergy warrants further detection in comprehensive systems 

506 designed especially for the anaerobic digestion of FW. Secondly, among of the different 

507 conductive materials, similar excellent performances were shown by GAC, carbon 

508 cloth, carbon felt, followed by graphite (Dang et al., 2017). The methanogenesis 

509 performance of AD systems of FW needs to be confirmed under additive materials 

510 adding with different dosages and physical sizes. Furthermore, the conductive materials 

511 like graphite, GAC, and carbon cloth are always too expensive to use as practical 

512 additives; in contrast, the biochar, which from thermal treated biomass waste, could be 

513 an ideal choose and need in-deep research.

514 7. Summary and perspectives

515 7.1 Summary

516 Additives applied in anaerobic digestion of FW play different roles to resolve 

517 inevitable obstacles or to optimize pathways so that the AD system remains stable and 

518 efficient with good energy conversion rate. This improvement can be achieved by: (i) 

519 promoting rate-limiting hydrolysis; (ii) maintaining a stable pH; (iii) supplying TMs to 

520 support microbial metabolism; and (iv) decreasing the lag time and strengthening the 

521 DIET pathway. According to literatures, the effect of additives was beneficial to the 

522 stability and efficiency of AD systems. However, the relationship between the input 

523 cost of additives and the output benefit of energy was not clear from different studies 

524 under various conditions. It is possible to conclude that every additive has a less than 
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525 perfect implementation process and needs further exploration before the economic 

526 benefit becomes the focus.

527 7.2 Perspectives

528 7.2.1 Trace metals from other wastes to improve reactor stability

529 Additive TMs play an essential role in anaerobic digestion of FW. On one hand, 

530 the accurate demand level of multiple TMs needs to be determined via analysis of 

531 changes in bacterial community dynamics under different temperatures, OLRs, and 

532 reactor types. On the other hand, the morphology of TMs in complex AD systems needs 

533 to be exploited, and improving their bioavailability could effectively decrease the 

534 required dosage. Based on the research done, co-digestion could compensate the TMs 

535 lack of FW; solve the cost problem of TMs additives; and synergistically treat TMs rich 

536 waste with simultaneous bioenergy recover, needs further study as a promising and 

537 sustainable way to be applied on FW digestion. 

538 7.2.2 Using high-rate reactor to improve anaerobic digestion efficiency

539 Food waste is not only a kind of organic solid waste, but also an easily 

540 biodegradable feedstock, which supports the feasibility of using high-rate reactors (i.e. 

541 UASB, EGSB, IC) with high OLRs. The most limiting factor is the high level of 

542 suspended solids in FW. Based on the above review, enzyme additives allow 

543 liquification of suspended solids, making it possible to convert FW to bioenergy 

544 efficiently. The great advantages of this process include: (i) fast liquification, or 

545 breakthroughs in changing the universal rate-limiting hydrolysis which occurred in the 
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546 AD of organic solid waste; (ii) eliminating most of the suspended solids organics and 

547 avoiding the traditional problem of unstable biogas residue; and (iii) supporting high 

548 OLRs operation and improving AD efficiency. The challenges are still highlighted for 

549 engineering applications. The amount of multiple enzymes is dynamic change based on 

550 unstable FW components. In addition, it is not economically feasible to use commercial 

551 enzyme additives. Fungal mash is a great alternative, but fungal bioengineering 

552 technologies (e.g. genomics, transcriptomics, proteomics, and interactomics) should be 

553 studied further. For example, excellent fungi breeds should be screened and the specific 

554 gene function for FW degradation need be strengthened.

555 7.2.3 Enhancing DIET to improve the stability and efficiency of FW anaerobic 

556 system 

557 Direct interspecies electron transfer is an efficient electron transfer pathway 

558 compared with interspecies hydrogen transfer, but is little applied in AD systems 

559 treating complex organic matter. Its effect on FW, in particularly, is unpredictable and 

560 needs specific study to confirm its efficiency and necessity. Biochar could be a 

561 preferred functional material, as it can be obtained from biogas residue without extra 

562 expenditure. The functional groups in biochar could act as electron shuttles and are as 

563 important as its electrical conductivity (for pili), needing further research (Xu et al., 

564 2016). 

565 8. Conclusions

566 Food waste is becoming a more and more serious problem all over the world, 
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567 especially for large cities. Anaerobic digestion of FW can not only reduce the solid 

568 waste amount, but also convert it to bioenergy. The value of this sustainable and clean 

569 way for waste minimization and energy recover, however, always be limited by 

570 instability and low efficiency of AD system induced by FW characteristic. Among 

571 studies, additives exhibit abundant features to compensate the defect of FW during AD 

572 process and wherefore, improve the stability and/or methane yield efficiency. Additives 

573 used in anaerobic digestion of FW were systematically reviewed in view of system 

574 stability and reactor efficiency. Liquification of organic solids could be greatly 

575 improved by adding enzymes, which not only enhance hydrolysis efficiency, but also 

576 support possible innovations in the reactor. Fungal mash would be an alternative for 

577 expensive commercial enzyme and has a superior effect (80-90% solid waste reduction) 

578 for FW hydrolysis, but its catalytic ability and optimization of fungal fermentation 

579 process need further study. The gusty pH decreasing is a major obstacle for the stable 

580 operation of AD process in practical engineering. Temporarily adding buffer chemicals 

581 like neutralizers and bicarbonates into AD reactor is an effective method, with self pH 

582 balance help of ammonia nitrogen generated from digestion of proteins in FW. In 

583 contrast, ZVI could be an available material from industrial waste, and be more suitable 

584 for practical engineering, with further study needed to confirm the specific mechanism 

585 of ZVI in acidification regulation. TMs are necessary and always not enough for 

586 anaerobic digestion of FW. Rough dosages were calculated based on present studies 

587 focusing on long-term reactor operations with high OLRs. In addition, the 
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588 bioavailability of TMs need to be further studied which greatly influences the efficiency 

589 of additives. Using conductive materials to promote DIET is a good idea to increase 

590 biogas production and avoid intermediate organic acid accumulation, but further study 

591 is needed to examine its application in AD systems of FW. Biochar, recycle from 

592 thermal treated biogas residue, could be an ideal choose and need in-deep research 

593 between material feature and microbial community. At last, a new concept was 

594 proposed for further study, i.e., well liquified FW with pre-hydrolysis by multiple 

595 enzymes could be co-digested with landfill leachate (rich in TMs) in high-rate reactors 

596 with good stability and high efficiency (OLRs of 10–30 g VS/L.d).

597 Acknowledgements

598 This study was financially supported by the National Natural Science Foundation 

599 of China (51578329, 51778352), the Science and Technology Commission of Shanghai 

600 Municipality (16010500200, 18230710900) and Program for Innovative Research Team 

601 in University (IRT13078). 

602 References
603 Ariunbaatar, J., Scotto Di Perta, E., Panico, A., Frunzo, L., Esposito, G., Lens, P.N., Pirozzi, F., 2015. 
604 Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Manag. 
605 38, 388-398.
606 Banks, C.J., Zhang, Y., Jiang, Y., Heaven, S., 2012. Trace element requirements for stable food waste 
607 digestion at elevated ammonia concentrations. Bioresour. Technol. 104, 127-135.
608 Bertin, L., Lampis, S., Todaro, D., Scoma, A., Vallini, G., Marchetti, L., Majone, M., Fava, F., 2010. 
609 Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or 
610 granular activated carbon. Water Res. 44, 4537-4549.
611 Braguglia, C.M., Gallipoli, A., Gianico, A., Pagliaccia, P., 2018. Anaerobic bioconversion of food waste 
612 into energy: A critical review. Bioresour. Technol. 248, 37-56.
613 Browne, J.D., Murphy, J.D., 2013. Assessment of the resource associated with biomethane from food waste. 
614 Appl. Energy 104, 170-177.
615 Browne, J.D., Murphy, J.D., 2014. The impact of increasing organic loading in two phase digestion of food 



ACCEPTED MANUSCRIPT

31

616 waste. Renew. Energy 71, 69-76.
617 Cai, J., He, P., Wang, Y., Shao, L., Lu, F., 2016. Effects and optimization of the use of biochar in anaerobic 
618 digestion of food wastes. Waste Manag. Res. 34, 409-416.
619 Capson-Tojo, G., Rouez, M., Crest, M., Steyer, J.P., Delgenès, J.P., Escudié, R., 2016. Food waste 
620 valorization via anaerobic processes: a review. Rev. Environ. Sci. Biotechnol. 15, 499-547.
621 Chen, H., Jiang, W., Yang, Y., Yang, Y., Man, X., 2017. State of the art on food waste research: a 
622 bibliometrics study from 1997 to 2014. J. Clean. Prod. 140, 840-846.
623 Chen, S., Rotaru, A.E., Liu, F., Philips, J., Woodard, T.L., Nevin, K.P., Lovley, D.R., 2014a. Carbon cloth 
624 stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol. 173, 82-86.
625 Chen, S., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P., Lovley, D.R., 2014b. 
626 Promoting interspecies electron transfer with biochar. Sci. Rep. 4, 5019.
627 Chen, X., Yan, W., Sheng, K., Sanati, M., 2014c. Comparison of high-solids to liquid anaerobic co-
628 digestion of food waste and green waste. Bioresour. Technol. 154, 215-221.
629 Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: a review. Bioresour. 
630 Technol. 99, 4044-4064.
631 Chen, Y., Li, X., Zheng, X., Wang, D., 2013. Enhancement of propionic acid fraction in volatile fatty acids 
632 produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water 
633 Res. 47, 615-622.
634 Choong, Y.Y., Norli, I., Abdullah, A.Z., Yhaya, M.F., 2016. Impacts of trace element supplementation on 
635 the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 209, 369-379.
636 Dang, Y., Holmes, D.E., Zhao, Z., Woodard, T.L., Zhang, Y., Sun, D., Wang, L.Y., Nevin, K.P., Lovley, 
637 D.R., 2016. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive 
638 materials. Bioresour. Technol. 220, 516-522.
639 Dang, Y., Sun, D., Woodard, T.L., Wang, L.Y., Nevin, K.P., Holmes, D.E., 2017. Stimulation of the 
640 anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based 
641 conductive materials. Bioresour. Technol. 238, 30-38.
642 Daniels, L., Belay, N., Rajagopal, B.S., Weimer, P.J., 1987. Bacterial methanogenesis and growth from 
643 CO2 with elemental iron as the sole source of electrons. Science 237, 509-511.
644 De Clercq, D., Wen, Z., Fan, F., Caicedo, L., 2016. Biomethane production potential from restaurant food 
645 waste in megacities and project level-bottlenecks: A case study in Beijing. Renew. Sustain. Energy Rev. 
646 59, 1676-1685.
647 De Vrieze, J., De Lathouwer, L., Verstraete, W., Boon, N., 2013. High-rate iron-rich activated sludge as 
648 stabilizing agent for the anaerobic digestion of kitchen waste. Water Res. 47, 3732-3741.
649 Ding, L., Cheng, J., Qiao, D., Yue, L., Li, Y.Y., Zhou, J., Cen, K., 2017. Investigating hydrothermal 
650 pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresour. 
651 Technol. 241, 491-499.
652 Elbeshbishy, E., Nakhla, G., 2011. Comparative study of the effect of ultrasonication on the anaerobic 
653 biodegradability of food waste in single and two-stage systems. Bioresour. Technol. 102, 6449-6457.
654 Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D., 2013. Effect of trace element 
655 supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of 
656 inoculum origin. Biochem. Eng. J. 70, 71-77.
657 Feng, Y., Zhang, Y., Quan, X., Chen, S., 2014. Enhanced anaerobic digestion of waste activated sludge 
658 digestion by the addition of zero valent iron. Water Res. 52, 242-250.



ACCEPTED MANUSCRIPT

32

659 Fisgativa, H., Tremier, A., Dabert, P., 2016. Characterizing the variability of food waste quality: A need 
660 for efficient valorisation through anaerobic digestion. Waste Manag. 50, 264-274.
661 Gao, S., Huang, Y., Yang, L., Wang, H., Zhao, M., Xu, Z., Huang, Z., Ruan, W., 2015. Evaluation the 
662 anaerobic digestion performance of solid residual kitchen waste by NaHCO3 buffering. Energy Conver. 
663 Manag. 93, 166-174.
664 Han, W., Fang, J., Liu, Z., Tang, J., 2016a. Techno-economic evaluation of a combined bioprocess for 
665 fermentative hydrogen production from food waste. Bioresour. Technol. 202, 107-112.
666 Han, W., Yan, Y.Y., Shi, Y.W., Gu, J.J., Tang, J.H., Zhao, H.T., 2016b. Biohydrogen production from 
667 enzymatic hydrolysis of food waste in batch and continuous systems. Sci. Rep. 6, 38395.
668 Han, W., Ye, M., Zhu, A.J., Huang, J.G., Zhao, H.T., Li, Y.F., 2016c. A combined bioprocess based on 
669 solid-state fermentation for dark fermentative hydrogen production from food waste. J. Clean. Prod. 112, 
670 3744-3749.
671 Han, W., Ye, M., Zhu, A.J., Zhao, H.T., Li, Y.F., 2015. Batch dark fermentation from enzymatic hydrolyzed 
672 food waste for hydrogen production. Bioresour. Technol. 191, 24-29.
673 Hao, X., Wei, J., van Loosdrecht, M.C.M., Cao, D., 2017. Analysing the mechanisms of sludge digestion 
674 enhanced by iron. Water Res. 117, 58-67.
675 Hu, Q.H., Li, X.F., Du, G.C., Chen, J., 2008. Effect of nitrilotriacetic acid on bioavailability of nickel during 
676 methane fermentation. Chem. Eng. J. 143, 111-116.
677 Karmee, S.K., 2016. Liquid biofuels from food waste: Current trends, prospect and limitation. Renew. 
678 Sustain. Energy Rev. 53, 945-953.
679 Kim, H.J., Kim, S.H., Choi, Y.G., Kim, G.D., Chung, T.H., 2006. Effect of enzymatic pretreatment on acid 
680 fermentation of food waste. J. Chem. Technol. Biotechnol. 81, 974-980.
681 Kim, M.S., Na, J.G., Lee, M.K., Ryu, H., Chang, Y.K., Triolo, J.M., Yun, Y.M., Kim, D.H., 2016. More 
682 value from food waste: Lactic acid and biogas recovery. Water Res. 96, 208-216.
683 Kiran, E.U., Trzcinski, A.P., Liu, Y., 2015. Enhancing the hydrolysis and methane production potential of 
684 mixed food waste by an effective enzymatic pretreatment. Bioresour. Technol. 183, 47-52.
685 Koch, K., Helmreich, B., Drewes, J.E., 2015. Co-digestion of food waste in municipal wastewater treatment 
686 plants: Effect of different mixtures on methane yield and hydrolysis rate constant. Appl. Energy 137, 250-
687 255.
688 Kong, X., Wei, Y., Xu, S., Liu, J., Li, H., Liu, Y., Yu, S., 2016. Inhibiting excessive acidification using 
689 zero-valent iron in anaerobic digestion of food waste at high organic load rates. Bioresour. Technol. 211, 
690 65-71.
691 Kong, X., Yu, S., Xu, S., Fang, W., Liu, J., Li, H., 2018. Effect of Fe0 addition on volatile fatty acids 
692 evolution on anaerobic digestion at high organic loading rates. Waste Manag. 71, 719-727.
693 Kuruti, K., Begum, S., Ahuja, S., Anupoju, G.R., Juntupally, S., Gandu, B., Ahuja, D.K., 2017. Exploitation 
694 of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate 
695 anaerobic digester without conceding on biogas yield. Bioresour. Technol. 226, 65-72.
696 Li, L., Peng, X., Wang, X., Wu, D., 2018a. Anaerobic digestion of food waste: A review focusing on process 
697 stability. Bioresour. Technol. 248, 20-28.
698 Li, Q., Xu, M., Wang, G., Chen, R., Qiao, W., Wang, X., 2018b. Biochar assisted thermophilic co-digestion 
699 of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment. 
700 Bioresour. Technol. 249, 1009-1016.
701 Li, Y., Jin, Y., Li, J., Li, H., Yu, Z., Nie, Y., 2017. Effects of thermal pretreatment on degradation kinetics 



ACCEPTED MANUSCRIPT

33

702 of organics during kitchen waste anaerobic digestion. Energy 118, 377-386.
703 Liao, X., Zhu, S., Zhong, D., Zhu, J., Liao, L., 2014. Anaerobic co-digestion of food waste and landfill 
704 leachate in single-phase batch reactors. Waste Manag. 34, 2278-2284.
705 Lin, C.S., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., 
706 Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R., 
707 2013. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current 
708 situation and global perspective. Energy Environ. Sci. 6, 426-464.
709 Lou, X., Nair, J., Ho, G., 2012. Effects of volumetric dilution on anaerobic digestion of food waste. J. 
710 Renew. Sustain. Energy 4, 063112.
711 Luo, C., Lu, F., Shao, L., He, P., 2015. Application of eco-compatible biochar in anaerobic digestion to 
712 relieve acid stress and promote the selective colonization of functional microbes. Water Res. 68, 710-718.
713 Ma, Y., Cai, W., Liu, Y., 2017a. An integrated engineering system for maximizing bioenergy production 
714 from food waste. Appl. Energy 206, 83-89.
715 Ma, Y., Yin, Y., Liu, Y., 2017b. A holistic approach for food waste management towards zero-solid 
716 disposal and energy/resource recovery. Bioresour. Technol. 228, 56-61.
717 Ma, Y., Yin, Y., Liu, Y., 2017c. New insights into co-digestion of activated sludge and food waste: Biogas 
718 versus biofertilizer. Bioresour. Technol. 241, 448-453.
719 Melikoglu, M., Lin, C.S.K., Webb, C., 2013a. Kinetic studies on the multi-enzyme solution produced via 
720 solid state fermentation of waste bread by Aspergillus awamori. Biochem. Eng. J. 80, 76-82.
721 Melikoglu, M., Lin, C.S.K., Webb, C., 2013b. Stepwise optimisation of enzyme production in solid state 
722 fermentation of waste bread pieces. Food Bioprod. Process. 91, 638-646.
723 Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., Li, X., 2015. Effect of lipase addition on hydrolysis 
724 and biomethane production of Chinese food waste. Bioresour. Technol. 179, 452-459.
725 Meng, Y., Luan, F., Yuan, H., Chen, X., Li, X., 2017. Enhancing anaerobic digestion performance of crude 
726 lipid in food waste by enzymatic pretreatment. Bioresour. Technol. 224, 48-55.
727 Menon, A., Wang, J.Y., Giannis, A., 2017. Optimization of micronutrient supplement for enhancing biogas 
728 production from food waste in two-phase thermophilic anaerobic digestion. Waste Manag. 59, 465-475.
729 Moon, H.C., Song, I.S., 2011. Enzymatic hydrolysis of foodwaste and methane production using UASB 
730 bioreactor. Int. J. Green Energy 8, 361-371.
731 Muller, N., Worm, P., Schink, B., Stams, A.J., Plugge, C.M., 2010. Syntrophic butyrate and propionate 
732 oxidation processes: from genomes to reaction mechanisms. Environ. Microbiol. Rep. 2, 489-499.
733 Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F.M., Toda, T., 2012. 
734 Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. 
735 Technol. 118, 210-218.
736 Nghiem, L.D., Koch, K., Bolzonella, D., Drewes, J.E., 2017. Full scale co-digestion of wastewater sludge 
737 and food waste: Bottlenecks and possibilities. Renew. Sustain. Energy Rev. 72, 354-362.
738 Parawira, W., 2012. Enzyme research and applications in biotechnological intensification of biogas 
739 production. Crit. Rev. Biotechnol. 32, 172-186.
740 Pham, T.P., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R., 2015. Food waste-to-energy 
741 conversion technologies: current status and future directions. Waste Manag. 38, 399-408.
742 Pinto, I.S., Neto, I.F., Soares, H.M., 2014. Biodegradable chelating agents for industrial, domestic, and 
743 agricultural applications-a review. Environ. Sci. Pollut. Res. Int. 21, 11893-11906.
744 Pleissner, D., Kwan, T.H., Lin, C.S., 2014. Fungal hydrolysis in submerged fermentation for food waste 



ACCEPTED MANUSCRIPT

34

745 treatment and fermentation feedstock preparation. Bioresour. Technol. 158, 48-54.
746 Qiang, H., Lang, D.L., Li, Y.Y., 2012. High-solid mesophilic methane fermentation of food waste with an 
747 emphasis on Iron, Cobalt, and Nickel requirements. Bioresour. Technol. 103, 21-27.
748 Qiang, H., Niu, Q., Chi, Y., Li, Y., 2013. Trace metals requirements for continuous thermophilic methane 
749 fermentation of high-solid food waste. Chem. Eng. J. 222, 330-336.
750 Rafieenia, R., Girotto, F., Peng, W., Cossu, R., Pivato, A., Raga, R., Lavagnolo, M.C., 2017. Effect of 
751 aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process 
752 using food waste with different compositions. Waste Manag. 59, 194-199.
753 Ratanatamskul, C., Wattanayommanaporn, O., Yamamoto, K., 2015. An on-site prototype two-stage 
754 anaerobic digester for co-digestion of food waste and sewage sludge for biogas production from high-rise 
755 building. Int. Biodeterior. Biodegrad. 102, 143-148.
756 Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., Liu, Y., 2018. A comprehensive review on food 
757 waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 247, 1069-1076.
758 Romero-Güiza, M.S., Vila, J., Mata-Alvarez, J., Chimenos, J.M., Astals, S., 2016. The role of additives on 
759 anaerobic digestion: A review. Renew. Sustain. Energy Rev. 58, 1486-1499.
760 Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovley, D.R., 2014a. Direct 
761 interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. 
762 Environ. Microbiol. 80, 4599-4605.
763 Rotaru, A.E., Shrestha, P.M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., 
764 Nevin, K.P., Lovley, D.R., 2014b. A new model for electron flow during anaerobic digestion: direct 
765 interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy 
766 Environ. Sci. 7, 408-415.
767 Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., Heiermann, M., 2011. Abundance of trace elements 
768 in demonstration biogas plants. Biosyst. Eng. 108, 57-65.
769 Sen, B., Aravind, J., Kanmani, P., Lay, C.H., 2016. State of the art and future concept of food waste 
770 fermentation to bioenergy. Renew. Sustain. Energy Rev. 53, 547-557.
771 Shahriari, H., Warith, M., Hamoda, M., Kennedy, K., 2013. Evaluation of single vs. staged mesophilic 
772 anaerobic digestion of kitchen waste with and without microwave pretreatment. J. Environ. Manage. 125, 
773 74-84.
774 Shin, H.S., Han, S.K., Song, Y.C., Lee, C.Y., 2001. Performance of uasb reactor treating leachate from 
775 acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res. 35, 3441-3447.
776 Stabnikova, O., Liu, X.-Y., Wang, J.-Y., 2008a. Anaerobic digestion of food waste in a hybrid anaerobic 
777 solid–liquid system with leachate recirculation in an acidogenic reactor. Biochem. Eng. J. 41, 198-201.
778 Stabnikova, O., Liu, X.Y., Wang, J.Y., 2008b. Digestion of frozen/thawed food waste in the hybrid 
779 anaerobic solid-liquid system. Waste Manag. 28, 1654-1659.
780 Stams, A.J., Plugge, C.M., 2009. Electron transfer in syntrophic communities of anaerobic bacteria and 
781 archaea. Nat. Rev. Microbiol. 7, 568-577.
782 Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., Lovley, D.R., 2010. Direct 
783 exchange of electrons within aggregates of an evolved syntrophic
784 coculture of anaerobic bacteria. SCIENCE 330, 1413-1415.
785 Sunyoto, N.M., Zhu, M., Zhang, Z., Zhang, D., 2016. Effect of biochar addition on hydrogen and methane 
786 production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 219, 
787 29-36.



ACCEPTED MANUSCRIPT

35

788 Takashima, M., Shimada, K., Speece, R.E., 2011. Minimum requirements for trace metals (Iron, Nickel, 
789 Cobalt, and Zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ. Res. 
790 83, 339-346.
791 Takashima, M., Speece, R.E., Parkin, G.F., 1990. Mineral requirements for methane fermentation. Crit. 
792 Rev. Environ. Control 19, 465-479.
793 Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., Rintala, J., 2014. Anaerobic digestion of 
794 autoclaved and untreated food waste. Waste Manag. 34, 370-377.
795 Tashiro, Y., Matsumoto, H., Miyamoto, H., Okugawa, Y., Pramod, P., Miyamoto, H., Sakai, K., 2013. A 
796 novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium 
797 at high temperatures. Bioresour. Technol. 146, 672-681.
798 Thanh, P.M., Ketheesan, B., Yan, Z., Stuckey, D., 2016. Trace metal speciation and bioavailability in 
799 anaerobic digestion: A review. Biotechnol. Adv. 34, 122-136.
800 Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., Hedderich, R., 2008. Methanogenic archaea: 
801 ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579-591.
802 Thi, N.B.D., Lin, C.-Y., Kumar, G., 2016. Waste-to-wealth for valorization of food waste to hydrogen and 
803 methane towards creating a sustainable ideal source of bioenergy. J. Clean. Prod. 122, 29-41.
804 Uçkun Kiran, E., Trzcinski, A.P., Ng, W.J., Liu, Y., 2014. Bioconversion of food waste to energy: A review. 
805 Fuel 134, 389-399.
806 Vintiloiu, A., Boxriker, M., Lemmer, A., Oechsner, H., Jungbluth, T., Mathies, E., Ramhold, D., 2013. 
807 Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of trace elements during anaerobic 
808 digestion. Chem. Engin. J. 223, 436-441.
809 Voelklein, M.A., O' Shea, R., Jacob, A., Murphy, J.D., 2017. Role of trace elements in single and two-stage 
810 digestion of food waste at high organic loading rates. Energy 121, 185-192.
811 Wang, D., Ai, J., Shen, F., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y., Song, C., 2017. Improving 
812 anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived 
813 from vermicompost. Bioresour. Technol. 227, 286-296.
814 Wang, K., Yin, J., Shen, D., Li, N., 2014a. Anaerobic digestion of food waste for volatile fatty acids (VFAs) 
815 production with different types of inoculum: effect of pH. Bioresour. Technol. 161, 395-401.
816 Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., Li, X., 2014b. Anaerobic co-digestion of kitchen 
817 waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Manag. 34, 2627-2633.
818 Wang, P., Wang, H., Qiu, Y., Ren, L., Jiang, B., 2018. Microbial characteristics in anaerobic digestion 
819 process of food waste for methane production-A review. Bioresour. Technol. 248, 29-36.
820 Wang, Y., Zang, B., Li, G., Liu, Y., 2016. Evaluation the anaerobic hydrolysis acidification stage of kitchen 
821 waste by pH regulation. Waste Manag. 53, 62-67.
822 Wei, Q., Zhang, W., Guo, J., Wu, S., Tan, T., Wang, F., Dong, R., 2014. Performance and kinetic evaluation 
823 of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester 
824 recovery and stability. Chemosphere 117, 477-485.
825 Wu, Y., Wang, C., Liu, X., Ma, H., Wu, J., Zuo, J., Wang, K., 2016. A new method of two-phase anaerobic 
826 digestion for fruit and vegetable waste treatment. Bioresour. Technol. 211, 16-23.
827 Xiao, N., Chen, Y., Chen, A., Feng, L., 2014. Enhanced bio-hydrogen production from protein wastewater 
828 by altering protein structure and amino acids acidification type. Sci. Rep. 4, 3992.
829 Xiao, X., Huang, Z., Ruan, W., Yan, L., Miao, H., Ren, H., Zhao, M., 2015. Evaluation and characterization 
830 during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane 



ACCEPTED MANUSCRIPT

36

831 bioreactor. Bioresour. Technol. 193, 234-242.
832 Xiao, X., Sheng, G.P., Mu, Y., Yu, H.Q., 2013. A modeling approach to describe ZVI-based anaerobic 
833 system. Water Res. 47, 6007-6013.
834 Xu, S., Adhikari, D., Huang, R., Zhang, H., Tang, Y., Roden, E., Yang, Y., 2016. Biochar-facilitated 
835 microbial reduction of hematite. Environ. Sci. Technol. 50, 2389-2395.
836 Xu, S., He, C., Luo, L., Lu, F., He, P., Cui, L., 2015. Comparing activated carbon of different particle sizes 
837 on enhancing methane generation in upflow anaerobic digester. Bioresour. Technol. 196, 606-612.
838 Yan, B.H., Selvam, A., Wong, J.W., 2016. Innovative method for increased methane recovery from two-
839 phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor. 
840 Bioresour. Technol. 217, 3-9.
841 Yan, S., Li, J., Chen, X., Wu, J., Wang, P., Ye, J., Yao, J., 2011. Enzymatical hydrolysis of food waste and 
842 ethanol production from the hydrolysate. Renew. Energy 36, 1259-1265.
843 Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H., Xu, Z., Ruan, W., 2015. Enhancing biogas generation 
844 performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. 
845 Int. Biodeterior. Biodegrad. 105, 153-159.
846 Yang, Q., Luo, K., Li, X.M., Wang, D.B., Zheng, W., Zeng, G.M., Liu, J.J., 2010. Enhanced efficiency of 
847 biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour. Technol. 
848 101, 2924-2930.
849 Yang, Y., Zhang, Y., Li, Z., Zhao, Z., Quan, X., Zhao, Z., 2017. Adding granular activated carbon into 
850 anaerobic sludge digestion to promote methane production and sludge decomposition. J. Clean. Prod. 149, 
851 1101-1108.
852 Yin, Y., Liu, Y.J., Meng, S.J., Kiran, E.U., Liu, Y., 2016. Enzymatic pretreatment of activated sludge, food 
853 waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic 
854 digestion. Appl. Energy 179, 1131-1137.
855 Yu, B., Shan, A., Zhang, D., Lou, Z., Yuan, H., Huang, X., Zhu, N., Hu, X., 2015. Dosing time of ferric 
856 chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. 
857 Bioresour. Technol. 189, 154-161.
858 Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J., 2016. Anaerobic digestion of food 
859 waste-Effect of recirculation and temperature on performance and microbiology. Water Res. 96, 246-254.
860 Zhang, C., Su, H., Baeyens, J., Tan, T., 2014. Reviewing the anaerobic digestion of food waste for biogas 
861 production. Renew. Sustain. Energy Rev. 38, 383-392.
862 Zhang, J., Loh, K.-C., Li, W., Lim, J.W., Dai, Y., Tong, Y.W., 2017. Three-stage anaerobic digester for 
863 food waste. Appl. Energy 194, 287-295.
864 Zhang, J., Lv, C., Tong, J., Liu, J., Liu, J., Yu, D., Wang, Y., Chen, M., Wei, Y., 2016. Optimization and 
865 microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on 
866 microwave pretreatment. Bioresour. Technol. 200, 253-261.
867 Zhang, L., Jahng, D., 2012. Long-term anaerobic digestion of food waste stabilized by trace elements. 
868 Waste Manag. 32, 1509-1515.
869 Zhang, L., Lee, Y.W., Jahng, D., 2011. Anaerobic co-digestion of food waste and piggery wastewater: 
870 focusing on the role of trace elements. Bioresour. Technol. 102, 5048-5059.
871 Zhang, W., Wu, S., Guo, J., Zhou, J., Dong, R., 2015a. Performance and kinetic evaluation of semi-
872 continuously fed anaerobic digesters treating food waste: Role of trace elements. Bioresour. Technol. 178, 
873 297-305.



ACCEPTED MANUSCRIPT

37

874 Zhang, W., Zhang, L., Li, A., 2015b. Anaerobic co-digestion of food waste with MSW incineration plant 
875 fresh leachate: process performance and synergistic effects. Chemical Engineering Journal 259, 795-805.
876 Zhang, W., Zhang, L., Li, A., 2015c. Enhanced anaerobic digestion of food waste by trace metal elements 
877 supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals 
878 bioavailability. Water Res. 84, 266-277.
879 Zhao, M.X., Yan, Q., Ruan, W.Q., Miao, H.F., Ren, H.Y., Xu, Y., 2011. Enhancement of substrate 
880 solubilization and hydrogen production from kitchen wastes by pH pretreatment. Environ. Technol. 32, 
881 119-125.
882 Zhao, Z., Li, Y., Quan, X., Zhang, Y., 2017a. Towards engineering application: Potential mechanism for 
883 enhancing anaerobic digestion of complex organic waste with different types of conductive materials. 
884 Water Res. 115, 266-277.
885 Zhao, Z., Zhang, Y., Li, Y., Dang, Y., Zhu, T., Quan, X., 2017b. Potentially shifting from interspecies 
886 hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact 
887 with conductive carbon cloth. Chem. Eng. J. 313, 10-18.
888 Zhao, Z., Zhang, Y., Quan, X., Zhao, H., 2016. Evaluation on direct interspecies electron transfer in 
889 anaerobic sludge digestion of microbial electrolysis cell. Bioresour. Technol. 200, 235-244.
890 Zhao, Z., Zhang, Y., Woodard, T.L., Nevin, K.P., Lovley, D.R., 2015. Enhancing syntrophic metabolism 
891 in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 191, 
892 140-145.
893 Zou, L., Ma, C., Liu, J., Li, M., Ye, M., Qian, G., 2016. Pretreatment of food waste with high voltage pulse 
894 discharge towards methane production enhancement. Bioresour. Technol. 222, 82-88.

895

896



ACCEPTED MANUSCRIPT

38

897 Figure caption
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899 Fig. 1. The mechanisms of different additives for anaerobic digestion of FW.
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907 Table captions

908 Table 1 Characteristic of specific TMs contents in different FWs and inoculum sludge.

909 Table 2 Comparison of different conductive additives for DIET enhancement.
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Table 1

a Inoculum of sludge from municipal wastewater treatment plant.
b Inoculum of sludge from laboratory-scale AD treating FW.
c Not detected or lower than limit.

FW Inoculum TMs Unit 
China 
(Zhang et 
al., 2015a; 
Zhang et 
al., 2015c)

Japan 
(Qiang 
et al., 
2012)

UK
(Banks 
et al., 
2012)

Belgium
(De 
Vrieze et 
al., 2013)

Italy
(Facchin 
et al., 
2013)

Ireland
(Voelklei
n et al., 
2017)

Korea
(Zhang 
et al., 
2011) 

MWTPa

(Zhang et 
al., 
2015a)

FW-ADb

(Zhang et 
al., 2015c)

Iron (Fe) mg/kg 
TS

230.7/97.4 286 54 37.3 NDc 31.5 7.17 2056 5133.2

Cobalt (Co) mg/kg 
TS

0.38/0.14 0.66 <0.06 0.05 <2 NDc NDc 3 160.8

Nickel (Ni) mg/kg 
TS

6.72/9.12 NDc 1.7 0.99 9.6 0.42 0.43 63.7 163.2

Selenium 
(Se) 

mg/kg 
TS

0.6/0.13 NDc <0.07 NDc <1 NDc NDc NDc 4.5

Molybdenum 
(Mo) 

mg/kg 
TS

NDc/1 NDc 0.11 0.39 <2 NDc 0.057 NDc 1186
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Table 2

Substrates Additives Reactors Microbial community Results Reference

Artificial wastewater 
(ethanol)

Graphite, 
biochar, carbon 
cloth

UASB - Carbon cloth with better performance,
Syntrophic metabolism for high-OLRs 

Zhao et al. 
(2015)

Artificial wastewater 
(1-butanol)

Carbon cloth Semi-continuous G. daltonii, metallireducens, 
uraniireducens and 
Methanosaeta species

DIET substituted interspecies hydrogen 
transfer,
350 mL CH4/g COD removal,
resist acidic impact

Zhao et al. 
(2017b)

Waste activated sludge Carbon felt Microbial 
electrolysis cell

Geobacter and Methanosaeta 
species

Increase 12.9% of methane production Zhao et al. 
(2016)

Dog food 
(food waste surrogate)

GAC, carbon 
cloth, carbon felt 

Semi-continuous Sporanaerobacter, 
Enterococcus and 
Methanosarcina species

Higher OLRs permitted, 
Faster recovery of soured reactors

Dang et al. 
(2016)

OFMSW (kitchen 
waste)

GAC, carbon 
cloth

Batch Sporanaerobacter and 
Methanosarcina species

Permit extremely high VFAs concentration 
(~500 mM)

Dang et al. 
(2017)

Artificial dairy 
wastewater

GAC, magnetite Two-phase semi-
continuous 

Geobacter and Methanosaeta 
species

Magnetite promote complex organics 
decomposition, GAC predominate 
methanogenic phase with DIET 

Zhao et al. 
(2017a)

FW/waste activated 
sludge

Biochar Batch Syntrophothermus, 
Methanosaeta, and 
Methanosarcina

Shorten lag time and enhance methane 
production rate at high organic loading

Li et al. 
(2018b)
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Highlights

 Poor system stability and low reactor efficiency are two main problems of AD of 

FW.

 Additives for AD of FW are reviewed regarding system stability and efficiency.

 Perspectives for future study on application of economical additives are discussed.

 Co-digestion of FW and landfill leachate in high rate reactors is proposed.


