21 research outputs found

    A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2.

    Get PDF
    Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. However, the role of the gut microbiota in regulating these responses has not been thoroughly investigated. In order to identify mechanisms underpinning microbiota interactions with host immune and metabolic systems that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalized COVID-19 patients and compared those with the most severe outcome (i.e. death, n = 41) to those with severe non-fatal disease (n = 89), or mild/moderate disease (n = 42), that recovered. A distinct subset of 8 cytokines (e.g. TSLP) and 140 metabolites (e.g. quinolinate) in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the fecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts, such as Enterococcus. In contrast, less severe clinical outcomes are associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents

    Detection of Epidemic Scarlet Fever Group A Streptococcus in Australia.

    Get PDF
    Sentinel hospital surveillance was instituted in Australia to detect the presence of pandemic group A Streptococcus strains causing scarlet fever. Genomic and phylogenetic analyses indicated the presence of an Australian GAS emm12 scarlet fever isolate related to United Kingdom outbreak strains. National surveillance to monitor this pandemic is recommended

    Frequent HPV-independent p16/INK4A overexpression in head and neck cancer

    Get PDF
    Objectives p16INK4A (p16) is the most widely used clinical biomarker for Human Papillomavirus (HPV) in head and neck squamous cell cancer (HNSCC). HPV is a favourable prognostic marker in HNSCC and is used for patient stratification. While p16 is a relatively accurate marker for HPV within the oropharynx, recent reports suggest it may be unsuitable for use in other HNSCC subsites, where a smaller proportion of tumors are HPV-driven. Materials and methods We integrated reverse phase protein array (RPPA) data for p16 with HPV status based on detection of viral transcripts by RNA-seq in a set of 210 HNSCCs profiled by The Cancer Genome Atlas project. Samples were queried for alterations in CDKN2A, and other pathway genes to investigate possible drivers of p16 expression. Results While p16 levels as measured by RPPA were significantly different by HPV status, there were multiple HPV (?) samples with similar expression levels of p16 to HPV (+) samples, particularly at non-oropharyngeal subsites. In many cases, p16 overexpression in HPV (?) tumors could not be explained by mutation or amplification of CDKN2A or by RB1 mutation. Instead, we observed enrichment for inactivating mutations in the histone H3 lysine 36 methyltransferase, NSD1 in HPV (?)/p16-high tumors. Conclusions RPPA data suggest high p16 protein expression in many HPV (?) non-oropharyngeal HNSCCs, limiting its potential utility as an HPV biomarker outside of the oropharynx. HPV-independent overexpression of wild-type p16 in non-oropharyngeal HNSCC may be linked to global deregulation of chromatin state by inactivating mutations in NSD1

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Anatomical integration and rich-club connectivity in euthymic bipolar disorder

    No full text
    Background. Although repeatedly associated with white matter microstructural alterations, bipolar disorder (BD) has been relatively unexplored using complex network analysis. This method combines structural and diffusion magnetic resonance imaging (MRI) to model the brain as a network and evaluate its topological properties. A group of highly interconnected high-density structures, termed the ‘rich-club’, represents an important network for integration of brain functioning. This study aimed to assess structural and rich-club connectivity properties in BD through graph theory analyses. Method. We obtained structural and diffusion MRI scans from 42 euthymic patients with BD type I and 43 age- and gender-matched healthy volunteers. Weighted fractional anisotropy connections mapped between cortical and subcortical structures defined the neuroanatomical networks. Next, we examined between-group differences in features of graph properties and sub-networks. Results. Patients exhibited significantly reduced clustering coefficient and global efficiency, compared with controls globally and regionally in frontal and occipital regions. Additionally, patients displayed weaker sub-network connectivity in distributed regions. Rich-club analysis revealed subtly reduced density in patients, which did not withstand multiple comparison correction. However, hub identification in most participants indicated differentially affected rich-club membership in the BD group, with two hubs absent when compared with controls, namely the superior frontal gyrus and thalamus. Conclusions. This graph theory analysis presents a thorough investigation of topological features of connectivity in euthymic BD. Abnormalities of global and local measures and network components provide further neuroanatomically specific evidence for distributed dysconnectivity as a trait feature of BD.status: publishe

    Paediatric Burkitt lymphoma patient-derived xenografts capture disease characteristics over time and are a model for therapy.

    Get PDF
    Burkitt lymphoma (BL) accounts for almost two-thirds of all B-cell non-Hodgkin lymphoma (B-NHL) in children and adolescents and is characterised by a MYC translocation and rapid cell turnover. Intensive chemotherapeutic regimens have been developed in recent decades, including the lymphomes malins B (LMB) protocol, which have resulted in a survival rate in excess of 90%. Recent clinical trials have focused on immunochemotherapy, with the addition of rituximab to chemotherapeutic backbones, showing encouraging results. Despite these advances, relapse and refractory disease occurs in up to 10% of patients and salvage options for these carry a dismal prognosis. Efforts to better understand the molecular and functional characteristics driving relapse and refractory disease may help improve this prognosis. This study has established a paediatric BL patient-derived xenograft (PDX) resource which captures and maintains tumour heterogeneity, may be used to better characterise tumours and identify cell populations responsible for therapy resistance.Alex Hulme Foundatio

    Association between gut microbiota development and allergy in infants born during pandemic-related social distancing restrictions

    No full text
    Background: Several hypotheses link reduced microbial exposure to increased prevalence of allergies. Here we capitalize on the opportunity to study a cohort of infants (CORAL), raised during COVID-19 associated social distancing measures, to identify the environmental exposures and dietary factors that contribute to early life microbiota development and to examine their associations with allergic outcomes. Methods: Fecal samples were sequenced from infants at 6 (n = 351) and repeated at 12 (n = 343) months, using 16S sequencing. Published 16S data from pre-pandemic cohorts were included for microbiota comparisons. Online questionnaires collected epidemiological information on home environment, healthcare utilization, infant health, allergic diseases, and diet. Skin prick testing (SPT) was performed at 12 (n = 343) and 24 (n = 320) months of age, accompanied by atopic dermatitis and food allergy assessments. Results: The relative abundance of bifidobacteria was higher, while environmentally transmitted bacteria such as Clostridia was lower in CORAL infants compared to previous cohorts. The abundance of multiple Clostridia taxa correlated with a microbial exposure index. Plant based foods during weaning positively impacted microbiota development. Bifidobacteria levels at 6 months of age, and relative abundance of butyrate producers at 12 months of age, were negatively associated with AD and SPT positivity. The prevalence of allergen sensitization, food allergy, and AD did not increase over pre-pandemic levels. Conclusions: Environmental exposures and dietary components significantly impact microbiota community assembly. Our results also suggest that vertically transmitted bacteria and appropriate dietary supports may be more important than exposure to environmental microbes alone for protection against allergic diseases in infancy.</p

    Association between gut microbiota development and allergy in infants born during pandemic-related social distancing restrictions

    No full text
    Background: Several hypotheses link reduced microbial exposure to increased prevalence of allergies. Here we capitalize on the opportunity to study a cohort of infants (CORAL), raised during COVID-19 associated social distancing measures, to identify the environmental exposures and dietary factors that contribute to early life microbiota development and to examine their associations with allergic outcomes. Methods: Fecal samples were sequenced from infants at 6 (n = 351) and repeated at 12 (n = 343) months, using 16S sequencing. Published 16S data from pre-pandemic cohorts were included for microbiota comparisons. Online questionnaires collected epidemiological information on home environment, healthcare utilization, infant health, allergic diseases, and diet. Skin prick testing (SPT) was performed at 12 (n = 343) and 24 (n = 320) months of age, accompanied by atopic dermatitis and food allergy assessments. Results: The relative abundance of bifidobacteria was higher, while environmentally transmitted bacteria such as Clostridia was lower in CORAL infants compared to previous cohorts. The abundance of multiple Clostridia taxa correlated with a microbial exposure index. Plant based foods during weaning positively impacted microbiota development. Bifidobacteria levels at 6 months of age, and relative abundance of butyrate producers at 12 months of age, were negatively associated with AD and SPT positivity. The prevalence of allergen sensitization, food allergy, and AD did not increase over pre-pandemic levels. Conclusions: Environmental exposures and dietary components significantly impact microbiota community assembly. Our results also suggest that vertically transmitted bacteria and appropriate dietary supports may be more important than exposure to environmental microbes alone for protection against allergic diseases in infancy.</p
    corecore