315 research outputs found

    SUSTAINABLE DEVELOPMENT OF AMOMUM VILLOSUM: A SYSTEMATIC INVESTIGATION ON THREE DIFFERENT PRODUCTION MODES

    Get PDF
    Background: Amomum Villosum (A. Villosum), called Chunsharen in Chinese, is widely used in treating gastrointestinal disease. Its clinical benefits have been confirmed by both in vitro and in vivo studies. Facing the shortage of wild A. Villosum, artificial cultivating and natural fostering have been practiced in recent years. Therefore, it would be wondered whether the three different types of A. Villosum are comparable or not, particularly the herbal qualities, technological challenges, ecological impacts and economic benefits. Material and methods: In this study, we combined quality research by using GC-MS, and field investigation to provide a systematic assessment about the three types of A. Villosum from these four aspects. Results: It found that the wild type had low output and was in an endangered situation. The artificial cultivation had larger agriculturing area with higher productivity, but faced the ecological challenges. Lastly, the natural fostering type generated the highest economic benefit and relatively low ecological impact. In addition, the natural fostering type had relatively better quality than the other types. Conclusion: Therefore, it suggests that natural fostering can be applied for long-term sustainable development of A. Villosum

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF-Guest Polyhedra.

    Get PDF
    Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal-organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF-guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF-guest candidates.The project was funded through a European Research Council (ERC) grant to S.K.S. (grant number: EMATTER 280078). A.K.C. and Y.W. thank the Ras Al Khaimah Center for Advanced Materials (RAK-CAM). T.W. thanks the China Scholarship Council (CSC) for funding and EPSRC Centre for Doctoral Training in Sensor Technologies and Applications (EP/L015889/1 and 1566990) for support. W.L. acknowledges the EPSRC grants (EP/L011700/1 and EP/N004272/1). Financial support by the Max Planck Society is gratefully acknowledged. K.D.F. acknowledges support from the Winston Churchill Foundation of the United States. C.Y. thanks the Cambridge Commonwealth, European and International Trust for funding

    Probing the Nature of High-z Short GRB 090426 with Its Early Optical and X-ray Afterglows

    Full text link
    GRB 090426 is a short duration burst detected by Swift (T901.28T_{90}\sim 1.28 s in the observer frame, and T900.33T_{90}\sim 0.33 s in the burst frame at z=2.609z=2.609). Its host galaxy properties and some γ\gamma-ray related correlations are analogous to those seen in long duration GRBs, which are believed to be of a massive-star origin (so-called Type II GRBs). We present the results of its early optical observations with the 0.8-m TNT telescope at Xinglong observatory, and the 1-m LOAO telescope at Mt. Lemmon Optical Astronomy Observatory in Arizona. Our well-sampled optical afterglow lightcurve covers from 90\sim 90 seconds to 104\sim 10^4 seconds post the GRB trigger. It shows two shallow decay episodes that are likely due to energy injection, which end at 230\sim 230 seconds and 7100\sim 7100 seconds, respectively. The decay slopes post the injection phases are consistent with each other (α1.22\alpha\simeq 1.22). The X-ray afterglow lightcurve appears to trace the optical, although the second energy injection phase was missed due to visibility constraints introduced by the {\em Swift} orbit. The X-ray spectral index is βX1.0\beta_X\sim 1.0 without temporal evolution. Its decay slope is consistent with the prediction of the forward shock model. Both X-ray and optical emission is consistent with being in the same spectral regime above the cooling frequency (νc\nu_c). The fact that νc\nu_c is below the optical band from the very early epoch of the observation provides a constraint on the burst environment, which is similar to that seen in classical long duration GRBs. We therefore suggest that death of a massive star is the possible progenitor of this short burst.Comment: 7 pages, 1 figures, 2 tables, revised version, MNRAS, in pres

    Hepatitis B Virus-Encoded X Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells

    Get PDF
    Hepatitis B virus (HBV) infection accounts for over a half of cases of hepatocellular carcinoma (HCC), the most frequent malignant tumor of the liver. HBV-encoded X (HBx) plays critical roles in HBV-associated hepatocarcinogenesis. However, it is unclear whether and how HBx regulates the expression of epidermal growth factor receptor (EGFR), an important gene for cell growth. Therefore, the study aimed to investigate the association between HBx and EGFR expression. In this study, we found that HBx upregulates miR-7 expression to target 3′UTR of EGFR mRNA, which in turn results in the reduction of EGFR protein expression in HCC cells. HBx-mediated EGFR suppression renders HCC cells a slow-growth behavior. Deprivation of HBx or miR-7 expression or restoration of EGFR expression can increase the growth rate of HCC cells. Our data showed the miR-7-dependent EGFR suppression by HBx, supporting an inhibitory role of HBx in the cell growth of HCC. These findings not only identify miR-7 as a novel regulatory target of HBx, but also suggest HBx-miR-7-EGFR as a critical signaling in controlling the growth rate of HCC cells

    Cancer-Secreted miR-105 Destroys Vascular Endothelial Barriers to Promote Metastasis

    Get PDF
    SummaryCancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exosome-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions and the integrity of these natural barriers against metastasis. Overexpression of miR-105 in nonmetastatic cancer cells induces metastasis and vascular permeability in distant organs, whereas inhibition of miR-105 in highly metastatic tumors alleviates these effects. miR-105 can be detected in the circulation at the premetastatic stage, and its levels in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-stage breast cancer

    In Vitro and In Vivo Anti-Angiogenic Activities of Panduratin A

    Get PDF
    Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy

    What is the Most Promising Electromagnetic Counterpart of a Neutron Star Binary Merger?

    Full text link
    The final inspiral of double neutron star and neutron star-black hole binaries are likely to be detected by advanced networks of ground-based gravitational wave (GW) interferometers. Maximizing the science returns from such a discovery will require the identification and localization of an electromagnetic (EM) counterpart. Here we critically evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and ~day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae"). We assess the promise of each counterpart in terms of four "Cardinal Virtues": detectability, high fraction, identifiability, and positional accuracy. Taking into account the search strategy for typical error regions of ~10s degs sq., we conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events, and to test the association with NS mergers. However, for the more ambitious goal of localizing and obtaining redshifts for a large sample of GW events, kilonovae are instead preferred. Off-axis optical afterglows will be detectable for at most ~10% of all events, while radio afterglows are promising only for the unique combination of energetic relativistic ejecta in a high density medium, and even then will require hundreds of hours of EVLA time per event. Our main recommendations are:(i) an all-sky gamma-ray satellite is essential for temporal coincidence detections, and for GW searches of gamma-ray triggered events; (ii) LSST should adopt a 1-day cadence follow-up strategy, ideally with ~0.5 hr per pointing to cover GW error regions (the standard 4-day cadence and depth will severely limit the probability of a unique identification); and (iii) radio searches should only focus on the relativistic case, which requires observations for a few months.Comment: 16 pages, 9 figures, 3 tables, submitted to Ap

    Template bank for compact binary mergers in the fourth observing run of Advanced LIGO, Advanced Virgo, and KAGRA

    Full text link
    Template banks containing gravitational wave (GW) waveforms are essential for matched-filtering GW search pipelines. We describe the generation method, the design, and validation of the template bank used by the GstLAL-based inspiral pipeline to analyze data from the fourth observing run of LIGO scientific, Virgo, and KAGRA collaboration. This paper presents a template bank containing 1.8×1061.8 \times 10^6 templates that include merging neutron star - neutron star, neutron star - black hole, and black hole - black hole systems up to a total mass of 400400 MM_\odot. Motivated by observations, component masses below 33 MM_\odot have dimensionless spins ranging between ±0.05\pm 0.05, while component masses between 33 to 200200 MM_\odot have dimensionless spins ranging between ±0.99\pm 0.99, where we assume spin-aligned systems. The low-frequency cutoff is 1515 Hz. The templates are placed in the parameter space according to the metric via a binary tree approach which took O(10)\mathcal{O}\left(10\right) minutes when jobs were parallelized. The template bank generated with this method has a 98%98\% match or higher for 90%90\% of the injections, thus being as effective as the template placement method used for the previous observation runs. The volumes of the templates are computed prior to template placement and the nearby templates have similar volumes in the coordinate space, henceforth, enabling a more efficient and less biased implementation of population models. SVD sorting of the O4 template bank has been renewed to use post-Newtonian phase terms, which improved the computational efficiency of SVD by nearly 454 \sim 5 times as compared to conventional SVD sorting schemes. Template banks and searches focusing on the sub-solar mass parameter space and intermediate-mass black hole parameter space are conducted separately
    corecore