6,119 research outputs found

    Analysis of nonlinear oscillators in the frequency domain using volterra series Part II : identifying and modelling jump Phenomenon

    Get PDF
    In this the second part of the paper, a common and severe nonlinear phenomenon called jump, a behaviour associated with the Duffing oscillator and the multi-valued properties of the response solution, is investigated. The new frequency domain criterion of establishing the upper limits of the nonlinear oscillators, developed in Part I of this paper, is applied to predict the onset point of the jump, and the Volterra time and frequency domain analysis of this phenomenon are carried out based on graphical and numerical techniques

    Piecewise Volterra modelling of the Duffing oscillator in the frequency domain

    Get PDF
    When analysing the nonlinear Duffing oscillator, the weak nonlinearity is basically dependent on the amplitude range of the input excitation. The nonlinear differential equation models of such nonlinear oscillators, which can be transformed into the frequency domain, can generally only provide Volterra modelling and analysis in the frequency-domain over a fraction of the entire framework of weak nonlinearity. This paper discusses the problem of using a new non-parametric routine to extend the capability of Volterra analysis, in the frequency domain, to weakly nonlinear Duffing systems at a wider range of excitation amplitude range which the current underlying nonlinear differential equation models fail to address

    Sensitivity study of generalised frequency response functions

    Get PDF
    The dependence and independence of input signal amplitudes for Generalised Frequency Response Functions(GFRF’s) are discussed based on parametric modelling

    Estimation of generalised frequency response functions

    Get PDF
    Volterra series theory has a wide application in the representation, analysis, design and control of nonlinear systems. A new method of estimating the Volterra kernels in the frequency domain is introduced based on a non-parametric algorithm. Unlike the traditional non-parametric methods using the DFT transformed input-output data, this new approach uses the time domain measurements directly to estimate the frequency domain response functions

    A new frequency domain representation and analysis for subharmonic oscillation

    Get PDF
    For a weakly nonlinear oscillator, the frequency domain Volterra kernels, often called the generalised frequency response functions, can provide accurate analysis of the response in terms of amplitudes and frequencies, in a transparent algebraic way. However a Volterra series representation based analysis will become void for nonlinear oscillators that exhibit subharmonics, and the problem of finding a solution in this situation has been mainly treated by the traditional analytical approximation methods. In this paper a novel method is developed, by extending the frequency domain Volterra representation to the subharmonic situation, to allow the advantages and the benefits associated with the traditional generalised frequency response functions to be applied to severely nonlinear systems that exhibit subharmonic behaviour

    Volterra series truncation and reduction in the frequency domain for weakly nonlinear system

    Get PDF

    Analysis of nonlinear oscillators using volterra series in the frequency domain Part I : convergence limits

    Get PDF
    The Volterra series representation is a direct generalisation of the linear convolution integral and has been widely applied in the analysis and design of nonlinear systems, both in the time and the frequency domain. The Volterra series is associated with the so-called weakly nonlinear systems, but even within the framework of weak nonlinearity there is a convergence limit for the existence of a valid Volterra series representation for a given nonlinear differential equation. Barrett(1965) proposed a time domain criterion to prove that the Volterra series converges with a given region for a class of nonlinear systems with cubic stiffness nonlinearity. In this paper this time-domain criterion is extended to the frequency domain to accommodate the analysis of nonlinear oscillators subject to harmonic excitation

    Analysis of a duffing oscillator that exhibits hysteresis with varying excitation frequency and amplitude

    Get PDF
    Hysteresis, or jump phenomenon, are a common and severe nonlinear behaviour associated with the Duffing oscillator and the multi-valued properties of the response solution. Jump phenomenon can be induced by either varying the amplitude or the frequency of excitation. In this paper a new time and frequency domain analysis is applied to this class of system based on the response curve and the response spectrum map

    Time-varying signal processing using multi-wavelet basis functions and a modified block least mean square algorithm

    Get PDF
    This paper introduces a novel parametric modeling and identification method for linear time-varying systems using a modified block least mean square (LMS) approach where the time-varying parameters are approximated using multi-wavelet basis functions. This approach can be used to track rapidly or even sharply varying processes and is more suitable for recursive estimation of process parameters by combining wavelet approximation theory with a modified block LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with severely nonstatinoary processes

    Analytical study of the frequency response function of a nonlinear spring damper system

    Get PDF
    A spring damper system with a nonlinear damping element is investigated using the Volterra series method to study the system frequency response function (FRF) characteristics. The relationship between the FRF and the characteristic parameters of the nonlinear damper is determined to produce an analytical description for the system FRF. Simulation studies are used to verify the theoretical analysis. These results provide an important basis for the FRF based analysis and design of nonlinear spring damper systems in the frequency domain
    • …
    corecore