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Abstract: In this the second part of the paper, a common and severe nonlinear 

phenomenon called jump, a behaviour associated with the Duffing oscillator and the 

multi-valued properties of the response solution, is investigated. The new frequency 

domain criterion of establishing the upper limits of the nonlinear oscillators, 

developed in Part I of this paper, is applied to predict the onset point of the jump, and 

the Volterra time and frequency domain analysis of this phenomenon are carried out 

based on graphical and numerical techniques.  

 

 

1. Introduction 

A new frequency domain criterion of finding the upper limits of a nonlinear oscillator 

with cubic stiffness was introduced in the Part I of this paper. A typical example of 

this kind of oscillator is the Duffing oscillator. The Duffing oscillator has been 

extensively applied to represent many practical systems and is often used as a 

benchmark example for nonlinear oscillator analysis. Summary works can be found in 

Hayashi(1964). 

In this, Part II of this paper, a common severe nonlinear phenomenon, referred to as 

jump, induced by the multi-valued solution due to the cubic nonlinearity in the 

Duffing oscillator, is studied.  Jump phenomenon is seemly a time domain 

phenomenon, but in fact it is closely associated with the Volterra/frequency domain 

representation, therefore the results from the first part of this paper are applied to 

explain the mechanism behind this phenomenon and to provide a prediction of the 

onset point for this behaviour change. In addition, time and frequency domain 

modelling of this phenomenon are performed.   

 

2. Preliminaries 

Consider the Duffing oscillator described as 

   )(3

31
tuykykycym =+++ ���                 with  )cos()( tAtu ω=              (1) 
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where m is the mass, c is the damping, 
1

k  and 
3

k are the linear and cubic stiffness 

respectively, and the initial conditions are set equal to zero.  

Despite the seemly simple form of Duffing’s equation(1), it is extremely rich in 

dynamic behaviour and exhibits many complex solutions. Almost every nonlinear 

phenomenon can be found in Duffing’s equation therefore it has often been used as a 

benchmark example in many studies. The bifurcation diagram in Figure 1 shows some 

typical dynamics of a Duffing oscillator with the parameters in (1) as 

4,1,4.0,1
31

==== kkcm                                           (2) 

at rad/sec 5.2=ω .  

 
Figure 1. Bifurcation diagram for system (2) 

 

It can be seen from Figure 1 that the Duffing oscillator experiences dramatic dynamic 

behaviours during the course of excitation amplitude changes. Among them, there is a 

period-doubling(1/2 subharmonics) for 43<A<50.5, a further period-doubling(1/4 

subharmonics) for 50.5<A<52, leading to chaos regime for 52<A<55. Subharmonics 

and chaos are two of the most common phenomena occurring in nonlinear oscillators 

and have attracted constant interest and study over the past decades(Stoker, 1957; 

Nayfeh and Mook, 1979; Feigenbaum, 1980; Frey and Norman, 1992; Thompson and 

Stewart, 1991; Rao, 1995; Boaghe and Billings,2003; Li and Billings, 2005, etc).  

Another commonly occurring nonlinear phenomenon is the shock jump, shown in 

Figure 1 over the excitation level 32 << A . As Pain(2005) pointed out the amplitude 

of the response is not single valued for a given frequency where shock jumps in 

response amplitude may occur.  

A zoomed view is shown in Figure 2 for the amplitude of response against the 

excitation level around the jump, which is the main subject of this study. Unlike  

subharmonics and chaos, this kind of severe nonlinear problem has received little 

attention to date. In the following sections, the prediction, analysis and modelling of 

the jump phenomenon using Volterra series in the frequency domain are introduced 

for the first time. 
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Figure 2. Response amplitude jump of system (2) 

 

3. Analysis of jump phenomenon  in the frequency domain 

As noted in Section 2, the Duffing oscillator (1) can represent very complex dynamic 

behaviours. For such a driven nonlinear oscillator, closed-form analytical solutions 

are not available therefore approximation schemes are used in quantitative 

investigations.  One of the approximation methods that have been widely adopted is 

the harmonic balance method. This involves re-arranging the external excitation in (1) 

as  

22with)cos()sin( QPAtQtPu +=+= ωω                         (3) 

and expressing the response as   

)sin( tCy ω=                                                                                   (4) 

Substituting (3) and (4) into (1), together with the use of )3sin()sin()(sin
4

1

4

33
ttt −=                          

yields 

)cos()sin()cos()sin()sin()sin( 1

23

34
3 tQtPtcHktcHtmHtHk +=++− ωωωωω      (5) 

where the term containing )3sin( tω has been neglected. 

Equating coefficients of the same harmonic terms in (5) and using 
22

QPA += gives(Rao, 1995) 

 222222

1

3

34

3 ])([ ACcCmkCk =+−+ ωω                                      (6) 

Because of the cubic nonlinearity 0
3

≠k , the response will be multi-valued,  shown in 

Figure 3.  
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Figure 3. Harmonic Balance solutions from (6) 

Comparing Figure 3 and Figure 2 reveals that the estimated harmonic balance 

solutions provide a good approximation of the real solution in terms of both value and 

trend.  Inspection of Figure 3 reveals that, when increasing the amplitude A to around 

1.4 until 2.8, two stable solutions will co-exist(the shadow range in Figure 3). When 

some certain conditions are met, the solution will jump from one to the other. 

However, (6) cannot provide any indication on why and when this type of severe 

dynamic change will happen.  

It is easy to verify that for the Solution 1 range, the original system (2) can provide a 

valid Volterra series/GFRF representation for the underlying system. This also 

indicates that, considering the analytic nature of Volterra series representation, the 

original system (2) will no longer be valid in the Volterra/GFRF’s domain from the 

start of Solution 2, or the response jumping point. This implies that the jumping point 

is the upper limit of the Volterra series representation for this type of nonlinear system. 

Recall that in the Part I of this paper a frequency domain criterion to obtain the upper 

limit of nonlinear oscillators with cubic stiffness subject to harmonic excitation was 

developed, rewritten here as (7) 

2
3

))(3(

2
)(

~

13
ω

ω
Hk

A =                                                     (7) 

where )(
1

ωH  is the first order frequency response function. 

The result of the new criterion (7) is shown in Figure 2 as point ‘J’, which is a good 

estimation of the real jump point.  This is not exceptional but, as the following 

example shows, this is a general rule for this kind of problem.  

Consider a Duffing oscillator with the parameters  

05.0 and 1,2.0,1 31 ==== kkcm .                                  (8) 

Figure (4) gives a clear overall picture of when and where the jump occurs along both 

varying excitation amplitude and frequency axes.  
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Figure 4. Response curve of the Duffing oscillator (8) for both varying excitation 

amplitude and frequency  

 

The jump cliff starts from rad/sec1=ω  and A=1.  The frequency point and the 

magnitude of the jump increase monotonically, as the amplitude of the excitation 

increases, showing a clear pattern. The rule that governs the pattern is indeed the 

criterion (7), as shown in Figure 5, in which the real jump line is the 2-D overhead 

view from Figure 4. It can be seen that the result by criterion (7) predicts very 

accurately the real jumping points.  

 

 
Figure 5. Comparison of real jump line with different Volterra criteria. Real—Solid; 

criterion (7)—Dashed; criterion (9)—circled, criterion (10)—dash dotted 

 

For comparison, the recent frequency domain criteria by Tomlinson et al(1996) and 

Peng and Lang(2007) are also displayed in Figure 5, in which Tomlinson’s criterion is 

defined as 

                  [ ] 2

1
3

133

2 )(()(
~ −

< ωω HkA
T

                                          (9) 

and Peng and Lang’s criterion is defined as  
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31
)(

1
)(

~

kH
A

P

λω
ω <                                            (10) 

where ( )ωλ )12((max
1

,...,1
−=

∞=
kH

k
      

Note that here the jumping line is the absolute splitting line dividing the validity and 

in-validity of the Volterra series representation for the original system. Clearly both (9) 

and (10) are significantly overestimated in the jumping case.   

Take a cross section of Figure 4 at rad/sec 2=ω .  

 

Figure 6. Response amplitude jump for system (8) at rad/sec 2=ω  

In this example the jump occurs at A=9.09, which agrees very well with the criterion 

(7) at 06.9)(
~

2
=

=ω
ωA . The new criterion (7) in the Part I of this paper was proposed 

based on the assumption that the system can be well described by the first few 

Volterra kernels and for which the higher order kernels fall off rapidly. This can be 

verified by exploring the response in terms of Volterra/GFRF representation right 

before and after the jump, as illustrated in Figure 7.  

 
Figure 7. Comparison of real response and synthesized response by GFRF’s before and 

after the jump.   Top---First order response, middle -- up to the 3
rd

 order response and 

bottom-- up to the 5
th

 order response. 
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So far we can conclude that fast convergence or representation efficiency is likely to 

be the mechanism behind the triggering of jumping. When the amplitude of excitation 

increases to the upper limit of a fast convergence low order Volterra series 

representation as (7) suggested, the response will be forced to jump to the other stable 

solution routine, making the original Duffing system no longer valid in the 

Volterra/frequency domain. This dramatic dynamic change has its appearance in the 

time domain, but actually has solid roots in the frequency domain. It is of therefore of 

interest to make a frequency domain investigation using Response Spectrum 

Map(RSM) (Billings and Boaghe, 2001) 

 

(a) 

 

(b) 

Figure 8. RSM for system (8) when the jump occurs; (a) 2D view and (b) 3D view 

 

Figure 8 shows that the harmonic components of response remain the same, both 

before and after the jump. The difference lies in the strength of the fundamental and 

higher order harmonics, cf. Figure 8 (b). This suggests that, although a global Volterra 

series representation is not possible from the description of the original system (1) for 

the range after the jump, a local Volterra series representation is still possible by 

means of discrete time parametric modelling.  

First, the discrete time domain Volterra expression is introduced as  

                      ∑=
∞

=1

)()(
n

n
kyky                                                   (11) 
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where   

∏ −∑ ∑ ⋅⋅⋅=
=

∞

∞−

∞

∞−

n

i
innn

kuhky
1

1
)(),,()( τττ�            Ζ∈> kn  ,0  

A discrete time Volterra series is also called a NX (Nonlinear model with eXogenous 

inputs) model. Such an NX model can be built at the after-jumping point A=9.09, 

presented in (12). Here the excitation and response data were collected by stimulating 

the system (1) using 5
th

 order Runge-Kutta method at a sampling interval 60π .  

)2()1(0.00721-           

)2( 0.00882  )1( 2.2584- )2( 3.1948)(
2

3

t- ut- u

k- uk- ukuky +−=
                    (12) 

The relevant Model Predicted output, which shows a perfect match with the real 

response, is given in Figure 9. Apparently Figure 9 suggests that the Duffing 

oscillator (1) at the after-jumping point A=9.09 can be very accurately modelled by 

the Volterra series model (12) with only up to 3
rd

 order kernels.  

 
Figure 9. Model Predicted Output by NX model (12): MPO—dashed; Real response--

solid 

 

The NX model (12) can be mapped into the frequency domain to obtain )(
1

⋅H and 

)(
3

⋅H (Peyton Jones and Billings, 1989). For comparison, the first order frequency 

response function at the before-jumping and after-jumping points is listed in Table 1. 

A significant increase of )(
1

ωH in magnitude is observed after the jump in order to 

compensate for the shock increase of the amplitude of response.   

)(
1

ωH from (8) at A=9.08 )(
1

ωH from (12) at A=9.09 

0.3304 0.9777 

Table 1. )(
1

ωH before and after the jump 

The above analysis can be extended to a more general situation over a full range of 

excitation frequencies.  

 

4. Volterra Modelling of the Duffing Equation with Varying Excitation 

Frequency 

Consider system (1) with the coefficients in (8). This time the amplitude of the 

excitation is kept constant at A=1.  On knowing the amplitude of excitation when the 
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jump occurs, the new criterion (7) can also be used to determine the corresponding 

frequency where a jump is displayed. In the current example, this frequency is 

calculated from (7) as 28.1=ω rad/sec, which is a very good agreement with the 

simulation results of the resonance response curve in Figure 10.  

 

 
 

Figure 10. Resonance response curve for Duffing Equation (1) with A=1 

Clearly there is a jump in the response from point C to point D, which suggests a 

severe behaviour change at this location. This will be studied by an inspection of (10) 

in the frequency domain using RSM in Figure 11. 

 

(a) 

 

(b) 

Figure 11. Response spectrum map for Duffing Equation (1) with A=1: (a) 2D view and 

(b) 3D view 
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It can be seen that as the frequency ω  increases, the GFRF’s derived from equation (8) 

are valid for the range A to B(ω =0.75rad/sec) in Figure 10. The GFRF’s start to 

become invalid for the range B to C(ω =1.28) in Figure 10, and become valid again 

for the range D to E. In other words, in the frequency domain, besides the same jump 

point as in the time domain at ω =1.28, there is another change point at around 

ω =0.75. However, the change at around ω =0.75 develops gradually, and is not as 

abrupt as the ‘jump’ at ω =1.28. This kind of frequency domain change does not 

appear to be revealed by traditional tools, such as the resonance diagram in Figure 10. 

The Response Spectrum Map, which is plotted in Figure 11, does provide some 

information about this frequency domain change. First of all, there are no 

subharmonics shown in Figure 11, suggesting that the system for the whole frequency 

range of interest could be mildly nonlinear and that a valid Volterra/frequency domain 

representation could exist over all the frequency range. Secondly, the apparent ‘jump’ 

from C to D at frequency point ω =1.28 in Figure 10 is clearly detected by the change 

of magnitude in first order(linear) harmonic line H1 and the subsequent higher order 

harmonic lines H3, H5, etc with a weaker harmonic presence. The 3D plot Figure 

11(b) further reveals that bigger drops are found in the higher order harmonic lines H3, 

H5 after the jump, with the H5 fade off very quickly. Since the higher order 

harmonics are associated with the higher order GFRF’s, this means that before the 

jumping the potential Volterra series representation should have a more significant 

higher order kernel presence. Finally the frequency domain change at point B in 

Figure 10 is not detected on the dominant first order(linear) harmonics line H1, but 

again the H3 line shows a significant third order harmonic change around the 

frequency point ω =0.75. In order to find the frequency domain representation for the 

range B to C, the technique in section 3 can be used repeatedly, that is, discrete time 

Volterra-- or equivalently NX—models can be identified from each pair of single tone 

excitation and response data, over the frequency range [0.75, 1.28]. For example, for 

excitation frequency ω =1, the corresponding discrete time Volterra model can be 

expressed, with a sample frequency π= 60sf , as 

)2()1( 3792.1          

)2( 3984.1)1( 40.24)2( 816.26)(
2

3

−−−

−+−−−=

kuku

kukukuky
            (13) 

from which the )(1 ⋅H and )(3 ⋅H data at frequency ω =1 can be obtained(Peyton Jones 

and Billings, 1989). 

By repeating this procedure for a number of excitation frequencies along [0.75, 1.28], 

the GFRF’s can be acquired by putting together the frequency response data recorded 

at each frequency point. The first order frequency response function )(1 ⋅H computed in 

this manner is plotted in Figure 12 (dashed).  

Using the approach introduced in Li and Billings(2001), a nonlinear continuous time 

model reconstructed from the )(1 ⋅H and )(3 ⋅H data, is given below 

)()(0001961.0)(04358.0 

002162.001939.018005.001713.087564.021727.0

32

23
4

4

3

3

2

2

tuy

yyy

dt

dy

dt

dy

dt

dy

dt

yd

dt

yd

dt

yd

dt

dy

=+−

−+++++
 

                 (14) 

The )(1 ⋅H  computed from equation (14) (solid)(Billings and Peyton Jones, 1990) is 

compared with the )(1 ⋅H from the Volterra modelling such as equation (13), in Figure 

12, which shows a good match.  
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Figure 12. )(1 ⋅H by reconstructed continuous time model (14) –solid and )(1 ⋅H by 

Volterra modellings—dashed 

To test the validity of the reconstructed continuous time model (14), arbitrarily choose 

an excitation frequency from the specific frequency range [0.75, 1.28], say, ω =0.9 

rad/sec, and compare the response from the original Duffing equation (8) and the 

response synthesized from the GFRF’s obtained from equation (14). It can be seen 

that up to third order GFRF’s from (14) can provide a satisfactory representation for 

the system, as shown in Figure 13.   

 

 Figure 13 (a) First order output response, and (b) up to the third order response 

Solid— synthesized output by GFRF’s from (14); Dashed--simulated original output 

from (8) 

In summary the whole picture of the frequency domain representation for the Duffing 

oscillator (10) when the excitation amplitude is fixed as A= 1 would look like Figure 

14 for the first order frequency response function for example. In summary, the 

frequency response function initially follows 1H  from the original Duffing equation 

(10) from A to B, then moves to 1H by the new equation (14) from B to C, and finally 

jumps back to 1H by the original Duffing equation (8) from D to E. 
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Figure 14. First order frequency domain response function for the Duffing oscillator (8) 

 

5. Conclusions 

 

The jump phenomenon is a common severe nonlinear dynamic behaviour found in 

many Duffing oscillators. The discussion in this paper shows that the jump is the 

dividing point between the validity of the Volterra series representation, or in other 

words, the absolute upper limit of a valid Volterra representation, therefore the new 

frequency domain criterion developed in the Part I of this paper can be readily used in 

predicting the onset point of the jump, which is proved to be very successful. The 

scheme behind the derivation of the new criterion, that is, the nonlinear system should 

be efficiently described by the first few Volterra kernels, can at the same time provide 

some explanation of the mechanism of the formation of the jump.    

A global Volterra series representation for the nonlinear oscillator involving jump 

phenomenon is not expected due to the analytic nature of the Volterra description. 

However local Volterra series representations are still possible. This point has been 

discussed and analysed using illustrative examples in this study.  
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