
This is a repository copy of Analysis of nonlinear oscillators using volterra series in the 
frequency domain Part I : convergence limits.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74643/

Monograph:
Li, L.M. and Billings, S.A. (2009) Analysis of nonlinear oscillators using volterra series in 
the frequency domain Part I : convergence limits. Research Report. ACSE Research 
Report no. 988 . Automatic Control and Systems Engineering, University of Sheffield 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Analysis of Nonlinear Oscillators Using 

Volterra Series in the Frequency Domain 

Part I : Convergence Limits 
 

 

L.M.Li and S.A.Billings 

 

 

 

 
 

 

 
 Department of Automatic Control  

and Systems Engineering, 

University of Sheffield, Sheffield   

Post Box 600 S1 3JD 

 UK 

 

 

Research Report No. 988 

 

May 2009 



 1 

 

Analysis of Nonlinear Oscillators Using 

Volterra Series in the Frequency Domain 

Part I : Convergence Limits 

 
L.M.Li and S.A.Billings**** 

 

Department of Automatic Control and Systems Engineering 

University of Sheffield 

Sheffield S1 3JD 

UK 

****S.Billings@sheffield.ac.uk 

 

Abstract: The Volterra series representation is a direct generalisation of the linear 

convolution integral and has been widely applied in the analysis and design of 

nonlinear systems, both in the time and the frequency domain.  The Volterra series is 

associated with the so-called weakly nonlinear systems, but even within the 

framework of weak nonlinearity there is a convergence limit for the existence of a 

valid Volterra series representation for a given nonlinear differential equation. 

Barrett(1965) proposed a time domain criterion to prove that the Volterra series  

converges with a given region for a class of nonlinear systems with cubic stiffness 

nonlinearity. In this paper this time-domain criterion is extended to the frequency 

domain to accommodate the analysis of nonlinear oscillators subject to harmonic 

excitation.  

 

1 Introduction 

 

Nonlinear Volterra theory was initially proposed by Volterra(1930). The theory 

quickly received a great deal of attention in the field of electrical engineering, 

mechanical engineering, and later in the biological field, as a powerful approach for 

modelling nonlinear system behaviours. From the late 1950s, there has been a 

continuous effort in the application of Volterra series to nonlinear systems theory. 

Summaries of major contributions in the application of Volterra series modelling for 

the representation, analysis and design of nonlinear systems can be found in 

Schetzen(1980),  Rugh(1981) , Sandberg(1984) and Nam and Powers(1994).   

Based on the Volterra series representation, Generalised Frequency Response 

Functions (GFRF’s) have proved to be powerful in the analysis and design of 

nonlinear systems in the frequency domain(Billings and Tsang, 1989). However this 

analysis can only be directly applied to so-called weakly nonlinear systems, which 

usually represent a small subset of the rich characteristics of nonlinear dynamics. It is 

therefore desirable to have a simple criterion establishing the boundary between weak 

nonlinearity and severe nonlinearity in the frequency domain.  
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In part I of this paper a new method is proposed to find the convergence region for a 

class of nonlinear oscillators with cubic stiffness nonlinearity subject to harmonic 

excitation.  In section 2 the Volterra/frequency modelling for single-input-single-

output nonlinear systems is reviewed. In section 3, the extension of the Barrett’s time 

domain method (Barrett,1965) to the frequency domain to accommodate harmonic 

excitation is presented. In section 4, numerical examples are used to demonstrate the 

new approach, along with the comparison with previous approaches. Finally in 

section 5 conclusions are given.  

In part II of this paper the well known jump phenomenon associated with the Duffing 

oscillator is studied.  

 

2 Volterra modelling in the time and frequency domain 

 

Volterra(1930) series modelling has been widely studied for the representation, 

analysis and design of nonlinear systems. The Volterra model is a direct 

generalisation of the linear convolution integral, therefore providing an intuitive 

representation in a simple and easy to apply way. For a SISO nonlinear system, where  

)(tu and )(ty are the input and output respectively, the Volterra series can be 

expressed as 

                      ∑
∞

=

=
1
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n

n tyty                                               (1.a) 

and  y tn ( )  is the ‘n-th order output’ of the system 
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where hn n( , , )τ τ1 ⋅ ⋅ ⋅  is called the ‘nth-order kernel’ or ‘nth-order impulse response 

function’. If n=1, this reduces to the familiar linear convolution integral. 

The discrete time domain counterpart of the continuous time domain SISO Volterra 

expression (1) is 
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where   
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In practice only the first few kernels are used on the assumption that the contribution 

of the higher order kernels falls off rapidly. Systems that can be adequately 

represented by a Volterra series with just a few terms are called a weakly or mildly 

nonlinear system.  

A valid Volterra series representation means valid Generalised Frequency Response 

Functions(GFRF’s). The GFRF’s are obtained by taking the multi-dimensional 

Fourier transform of )(⋅nh :  

nnnnnnn ddjhH τττωτωττωω ⋅⋅⋅+⋅⋅⋅+−⋅⋅⋅⋅⋅⋅=⋅⋅⋅ ∫ ∫
∞

∞−

∞

∞−
11111 ))(exp(),,(),,(      (3) 

The generalised frequency response functions represent an inherent and invariant 

property of the underlying system, and have proved to be an important analysis and 
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design tool for characterising nonlinear phenomena. In practice, the GFRF’s can be 

estimated using non-parametric or parametric methods. The parametric method 

involves mapping a nonlinear differential equation(Billings and Peyton Jones, 1990) 

or mapping a nonlinear difference equation(Peyton Jones and Billings, 1989) into the 

frequency domain using the probing method. 

 

3   Derivation of convergence region in the frequency domain 

 

Barrett(1963) was one of the first people to carry out a systematic study of the 

application of Volterra series to the analysis of nonlinear differential equations and 

nonlinear feedback systems. A new time domain approach for finding the 

convergence region of the derived Volterra series representation under arbitrary inputs 

was later proposed by Barrett(1965). In this paper this time domain approach is 

extended to the frequency domain to accommodate the case of nonlinear oscillations 

subject to harmonic excitations.  

Considering the following system with cubic stiffness nonlinearity 

)()()()( 3

3
tutykty

dt

d
L =+                                       (4) 

where 
3

k is a small constant and
p

pp
aqaqqL +++= −

�
1

1
)(  with the  assumption  

that 0)( =qL  has roots with negative real parts.   

Initially, the time domain convergence analysis proposed by Barrett(1965) will be 

briefly illustrated.  

The nonlinear system (4) has a Volterra series representation which includes the 1
st
 

and 3
rd

 order kernels(Barrett, 1965) 
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where   
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Denoting  
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For a convergent Volterra expression, each of the terms in (5) needs to be bounded. 

For the first term, 
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Similarly for the second term, by using (6),  
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Therefore each term of the Volterra series representation in (5) does not exceed, in 

absolute magnitude, the corresponding term of a certain power series 
34

3
)( UkUUY Θ+Θ=Φ=                                                     (9) 

provided that Uu < . 

In fact the solution of (9) is a series solution of the equation  

              UYkY Θ=Θ− 3

3
                                                            (10) 

by the method of successive approximation.  

Barrett(1965) proved that the Volterra series (5) is convergent if 
1

Uu < where 

2
3
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Nonlinear systems described by (4) represent a large number of single-degree-of-

freedom physical systems with nonlinear stiffness and widely exist in circuits, aircraft 

and marine engineering etc.  Most of the dynamics of these nonlinear systems, such as 

hysteresis, limit cycles, bifurcations and chaos, were built in the framework of 

nonlinear oscillation and vibration subject to harmonic excitations. It is therefore 

desirable to extend the purely time domain criterion (11) into the frequency domain 

by probing the system using harmonics excitation.   

Assume the excitation is in the harmonic form   
tj

Aetu
ω=)(       with A>0 
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using the definition  



 5 
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Similarly the second term in (5) is bounded by 
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Hence the response of the Volterra series representation (5) will not exceed, in 

absolute magnitude, 
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with  Ŷ is the successive approximation of  
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The maximum amplitude A
~

 of excitation allowed to have a convergent Volterra 

series at different excitation frequency ω  can be obtained by solving 0ˆ/ =YddA  in 

(15) to give 
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Therefore the following result holds between the time domain criterion (11) and the 

frequency domain criterion (16):  

                
∞<<

≤
ω

ω
0

1
))(

~
min(AU                                                         (18) 

(18) reflects the fact that Barrett’s time domain criterion, which deals with arbitrary 

excitation and with harmonic excitation as a special case, represents the worst case 

and is therefore a conservative result.  

 

4  Numerical illustrations and discussions 

 

By setting 2=p  with )(tu in sinusoidal format, (4) reduces to  

)cos(3

321
tAykyayay ω=+++ ���                                            (19) 

which is the well-know Duffing’s oscillator, introduced by Duffing in 1918 to 

describe a mechanical problem under periodic forces. It is one of the most common 

examples in the study of nonlinear oscillations. Typically in a mechanical format  

Duffing’s oscillator is described as 

  )cos(3

31
tAykykycym ω=+++ ���                                          (20) 

where m is the mass, c is the damping, 
1

k  is proportional to the stiffness of the spring, 

and 
3

k is the cubic stiffness. 0
3

>k models a hardening nonlinearity, and 0
3

<k  
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models a softening nonlinearity. The upper limit of excitation level which allows a 

valid Volterra series representation under both hardening and softening nonlinearity 

situations will be discussed next. A valid Volterra series representation means valid 

GFRF’s from which the steady-state estimation of the response can be generated. 

Because the Duffing equation (20) contains a cubic nonlinear term 3y , all even orders 

of GFRF’s are zero and make no contribution to the system response. Therefore the 

steady-state response using with nonlinearities up to the 7
th 

order truncation is 

(Bedrosian and Rice, 1971) 
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where the response for the various orders are 
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4.1 Hardening nonlinearity  

A number of criteria to find the upper limits of the magnitude of harmonic excitation 

in Duffing’s oscillator with 0
3

>k have been proposed (Tomlinson et al , 

1996;Chatterjee and Vyas, 2000; Peng and Lang, 2007).  Peng and Lang(2007) 

pointed out that the criterion proposed by Chatterjee and Vyas(2000) based on a ratio 

test procedure was essentially the same as Tomlinson’s(Tomlinson et al , 1996) with 

different computational approaches. Therefore only Tomlinson’s and Peng and Lang’s 

result are presented here for discussion. 

Tomlinson’s criterion is defined as 

                  [ ] 2

1
3

133

2 )(()(
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which is similar to the extended Barrett’s result (16) but differs in magnitude, and 

Peng and Lang’s criterion is defined as  

31
)(

1
)(

~

kH
A

P

λω
ω <                                                         (24) 

where  

( )ωλ )12((max
1

,...,1
−=

∞=
kH

k
                                                       (25) 

 

The coefficients of the Duffing oscillator used in the numerical study are 

1.0,5.0,5.1,1
31

==== kkcm                                                (26) 

The frequency domain criteria by (16), (23) and (24) are shown in Figure 1.  

 
Figure 1. Frequency domain criterion by (16), (23) and (24) 

 

Barrett’s time domain result by (11), in this example, is exactly the minimum value 

from the new frequency domain criterion (16), that is   

43.0))(
~

min(
0

1
==

∞<<ω

ωAU  

which occurs at 0=ω . 

It can be seen from Figure 1 that in the low frequency range the results of the different 

criterion are not significantly different, but as the frequency increases the system can 

endure higher and higher levels of excitation with a valid Volterra series solution, and 

the difference between different criteria becomes more and more significant. For 

example, at rad/sec.52=ω , the result by criterion (23) is 46.44)(
~

5.2
=

=ω
ω

T
A . 

Exciting  the Duffing system (26) at  level 45=A which is within the region set out 

by )(
~

ω
T

A  , the resulting real response and the synthesized response up to 7
th

 order 

GFRF’s using (21)-(22) are compared in Figure 2.   
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Figure 2  (a) First order output response,  (b) up to the 3

rd
  order response, (c) up to the 5

th
 order 

response, and (d) up to the 7
th

 order response  Dashed— synthesized output by GFRF’s from 

(22); Solid--simulated original output from (26) 

A clearer numerical measure of the closeness of fit between the synthesized response 

and the real response can be obtained by using the Normalised Root Mean Square 

error defined as  

∑ −

∑ −
=

2

2

))()((

))()((

tyty

tyty
NMSE

meanreal

realsyn
                                  (27) 

where )(ty
syn

is the synthesized response and )(ty
mean

is the mean value of the real data 

set )(ty . Table 1 shows the NMSE in different approximation orders.   

 

 1
st
 order 

synthesis  

Up to 3
rd

 order 

synthesis 

Up to 5
th

 order 

synthesis 

Up to 7
th

  order 

synthesis 

NMSE 1.1646     1.1944     1.2586          1.4729 

 

Table 1. Comparison of NMSE between the real response and synthesized response 

 

The results in Figure 2 and Table 1 suggest that the Volterra representation at this 

excitation level is not convergent.   

In addition, the power spectrum of the real response is illustrated in Figure 3, showing 

an overwhelmingly dominant first harmonic presence, compared with other higher 

order harmonics. Whereas in Figure 1(a) there is a large bias in the first order 

harmonic estimation, in terms of both amplitude and phase. It can be argued that even 

theoretically there is a convergent Volterra series representation around this level of 

excitation, this convergence can only be achieved at the high cost of employing 

extremely high order GFRF’s in order to compensate the bias in the first order 

harmonic. This makes the Volterra series representation or the application of GFRF’s 

using the original system description (26) uneconomic in terms of computational 

burden and expression, and therefore less practical.  
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Figure 3. Power spectrum of the real response from system (26) at A=45 

Consider another example. By denoting ,
10

mk=ω ,)2(
0

ωµ c= ,
13

kk=ε  

AmA )1(
0

= , (20) can be transferred to the other commonly used form 

)cos(2
0

32

0

2

00
tAyyyy ωεωωµω =+++ ���                             (28) 

which has been studied by Peng and Lang(2007).  

A comparison of the criteria is shown in Figure 4 using (16), (23) and (24) 

respectively. Again in the low frequency range, there are small differences between 

all the criteria (16), (23) and (24) for locating the upper limits of the Volterra series 

representation under harmonic excitation. In particular, the criterion (24) by Peng and 

Lang(2007) can provide a more accurate estimation of the excitation limit at the  

03

1 ω sub-resonant frequency. While as the frequency increases to greater than the 

natural resonance frequency
0

ω , as the system experiences more complicated 

dynamics, the differences between the criteria become more and more significant. The 

frequency dynamics of the underlying system can be more easily studied by a diagram 

called the Response Spectrum Map(RSM), which was proposed by Billings and 

Boaghe(2001) as a frequency domain alternative to the traditional bifurcation diagram. 

One such RSM is shown in Figure 5 at 
0

1.2 ωω = , with  51.42,23.24
21

== AA and 

97.62
3

=A  in the figure corresponding to the criteria (16), (23) and (24) respectively. 

The line H1 represents the first order harmonicsω  (fundamental frequency) and the 

line H3 is the third order harmonics ω3 . It is very clear from Figure 5 that for 

5038 << A , the system has 
3

1 subharmonics in the response at most frequencies, and  

for 6550 << A  the system experiences 
5

1  subharmonics. It is well known that the 

Volterra series can not be used to directly model the system that exhibits 

subharmonics, this means that in this case, the values  
2

A and 
3

A , which are well into 

the subharmonic zone, are overestimated. It can also be easily examined that the real 

convergent upper limit for this case is around 21=A , which is close to the new result 

23.24
1

=A by (16) . 
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                                                      )(xFrequency 
0

ω  

                  Figure 4. The criteria by (16)-dot, (23)-dashed and (24)-solid 

 

 

(a) 

 

(b) 

Figure 5.  Response Spectrum Map of Duffing oscillator (28) at 
0

1.2 ωω = : (a) 2D view and (b) 

3D view 

 

4.2 Softening nonlinearity case 
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The other frequency domain criteria mentioned in section 4.1 excludes the situation 

when the cubic stiffness is less than zero. Generally speaking when 0
3

<k , the 

Duffing oscillator has a more restricted convergence region than that for 0
3

>k .  

The coefficients of the Duffing oscillator used in the softening nonlinearity case are 

1.0,5.0,5.1,1
31

−==== kkcm                                  (29) 

A Response Spectrum Map for system (29) at 2.1=ω is shown in Figure 6. It can be 

seen from Figure 6 that, before the system becomes unstable at 99.3=A , it 

experiences a very brief window in which the response contains, in addition to the 

odd order harmonics, even order harmonics components ω2  and ω4 (very weak 

though) over 99.393.3 << A . Theoretically this means that the existence of a 

Volterra series representation for this amplitude range is ruled out. For 93.3<A  the 

response contains standard odd order harmonics, that is, ,ω ω3 and ω5 , etc. Therefore 

93.3=A  can be regarded as the decision point between the existence and non-

existence of a valid Volterra series representation for the Duffing oscillator (29) at 

2.1=ω . This decision value is close to the result given by the new criterion (16) at 

52.3|)(
~

2.1
=

=ωωA . It is interesting to analyse the frequency domain synthesis of the 

response using GFRF’s, as shown in Figure 7, at the decision point 93.3
~

=A . It is 

clear from Figure 7 that a fast convergence can be achieved by using only the first and 

3rd orders of Volterra kernels. This suggests that a quick convergence of Volterra 

series representation as assumed from the derivations of (16) has practical grounds.   

 

(a) 

 

(b) 

Figure 6.  Response Spectrum Map for system (29) at 2.1=ω : (a) 2D view and (b) 3D view 
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          Figure 7.  (a) First order output response,  (b) up to the 3

rd
  order response, Dashed— 

synthesized output by GFRF’s;  Solid--simulated original output from (29) 

 

4.3 The case when L(p)  has unstable roots  

The criterion (16) is based on the assumption that the linear part of the nonlinear 

oscillator is stable, that is, the roots of 0)( =qL  in (4) have negative real parts.  

This restriction was not explicitly imposed by the previous criteria (23) and (24), 

etc. The necessity of this restriction can be made evident in the following 

simulation. Figure 8 shows the RSM of a Duffing-Holmes oscillator with the 

parameters  

1,2.0,5.1,1
31

=−=== kkcm                              (30)  

and excitation frequency  sec/8.0 rad=ω .   

 

(a)  

 

(b) 

Figure 8. RSM for Duffing-Holmes oscillator (30): (a) 2D view and (b) 3D view 
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It is clear from Figure 8 that for the lower amplitude range 57.0<A  there are 

,...4,3,2,,0 ωωωω harmonics, which immediately rules out the existence of a valid 

Volterra series representation. For 57.0>A valid Volterra series representations can 

be derived from (30) until the excitation level A reaches around 1.6. Therefore this 

essentially means that the original system (30) can only possibly produce a 

convergent Volterra series representation over a narrow band of external excitation 

levels, rather than within a radius of convergence, making any of the previous 

mentioned criteria inapplicable. Further work is needed to solve this class of problem.  

 

5 Conclusions 

The Volterra series representation has been extensively studied and applied in the 

modelling, analysis and control of nonlinear systems. However it has a limited 

convergence. It is therefore desirable to establish the convergence radius. A new 

criterion has been derived in this article by extending the previous time domain work 

to periodically excited nonlinear differential equations based on a truncated Volterra 

series representation. It has been shown that in many cases this new criterion can 

produce a more accurate estimation of the upper limit of the convergence region than 

the previously proposed criteria. This criterion is especially useful from the practical 

viewpoint for systems that require quick convergence in the Volterra domain.  

The advantage of the new criterion will be more evident in Part II of this paper in 

which it is applied to successfully predict the upper limits of Volterra series 

representation for Duffing oscillators that exhibit a common type of severe 

nonlinearity called a shock jump in the response.  
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