research

Analysis of nonlinear oscillators using volterra series in the frequency domain Part I : convergence limits

Abstract

The Volterra series representation is a direct generalisation of the linear convolution integral and has been widely applied in the analysis and design of nonlinear systems, both in the time and the frequency domain. The Volterra series is associated with the so-called weakly nonlinear systems, but even within the framework of weak nonlinearity there is a convergence limit for the existence of a valid Volterra series representation for a given nonlinear differential equation. Barrett(1965) proposed a time domain criterion to prove that the Volterra series converges with a given region for a class of nonlinear systems with cubic stiffness nonlinearity. In this paper this time-domain criterion is extended to the frequency domain to accommodate the analysis of nonlinear oscillators subject to harmonic excitation

    Similar works