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Abstract: For a weakly nonlinear oscillator, the frequency domain Volterra kernels, 
often called the generalised frequency response functions, can provide accurate 
analysis of the response in terms of amplitudes and frequencies, in a transparent 
algebraic way. However a Volterra series representation based analysis will become 
void for nonlinear oscillators that exhibit subharmonics, and the problem of finding a 
solution in this situation has been mainly treated by the traditional analytical 
approximation methods. In this paper a novel method is developed, by extending the 
frequency domain Volterra representation to the subharmonic situation, to allow the 
advantages and the benefits associated with the traditional generalised frequency 
response functions to be applied to severely nonlinear systems that exhibit 
subharmonic behaviour.   
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1. Introduction 
Nonlinear oscillations are widely found in classical mechanics, electronic, 
communications, biology, and many other science branches.   

In general, closed-form analytical solutions are not available for those nonlinear 
oscillators described by nonlinear differential equations under external periodic 
excitation, therefore approximation schemes are often used in qualitative and 
quantitative investigations. In order to derive the estimated solution of a nonlinear 
oscillator, in terms of the amplitude A and the frequency  , a number of analytical 
approximation methods has been developed, including the describing function 
method(Krylov and Bogolyubov, 1947), harmonic balance method(Stoker, 1950), 
perturbation methods(Hagedorn, 1988) etc.  

As an alternative, the Volterra series, first proposed by Volterra (Volterra, 1930), has 
been widely applied in the representation and analysis of a wide range of nonlinear 
systems. A significant advantage of using the generalised frequency response 
functions(GFRFs), the frequency domain Volterra representation, in the analysis of 
nonlinear oscillations is that the general solution of nonlinear differential equations 
can be developed using an algebraic approach (Chua and Tang 1982; Fliess et al 1983) 
within any desired accuracy.  GFRFs have also been proved to be an important 
analysis and design tool for characterizing nonlinear phenomena(Billings and Tsang, 
1989;Yue et al. 2005).  
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However, the Volterra series representation has limitations. Volterra series can 
generally be used in the analysis of so-called weakly nonlinear systems, which 
significantly restricts its capacity of application in the representation and analysis of a 
large number of severely nonlinear phenomena. One of the most common severely 
nonlinear phenomena are subharmonic oscillations, in which the oscillation frequency 
is a fraction of that of the external excitation. Analytical approximation methods have 
been applied in the calculation of subharmonic solutions (Stoker, 1950; Nayfeh and 
Mook, 1979; Hayashi, 1953;Hassan, 1994) , but these were mainly restricted to 
specialised nonlinear structures or for a reduced number of  harmonics in the solution 
in order to simplify the associated computations, resulting in a loss of generality and 
accuracy.  In the Volterra series domain, Li and Billings(2005) studied the Volterra 
representation based on a MISO discrete time parametric modelling approach. 
However this representation is only valid at the specific excitation amplitude point.  

In this paper the frequency domain Volterra representation is generalised for the first 
time to the subharmonic oscillation case which will be valid over the whole excitation 
amplitude range. The estimation of the frequency domain ‘kernels’ is discussed and 
the analysis of the subharmonic oscillations based on the new ‘kernels’ is presented 
based on two illustrative examples.  

  

2. Volterra series representation in the time and frequency domain 
Volterra series modelling has been widely studied for the representation, analysis and 
design of nonlinear systems. Consider a nonlinear system defined by the nonlinear 
mapping  

          )]([)( tuty T                                                                (1) 

where )(tu and )(ty are the excitation input and response respectively.  In the 
framework of weak nonlinearity, (1) can be described by Volterra(1930) series 
modeling as  
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where  )(tyn  is the ‘n-th order response’ of the system 
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][nT is called the ‘nth-order Volterra operator’, and ),,( 1 nnh    is called the ‘nth-

order kernel’ or ‘nth-order impulse response function’. If n=1, this reduces to the 
familiar linear convolution integral. In this sense, the Volterra model is a direct 
generalization of the linear convolution integral, therefore providing an intuitive 
representation in a simple and easy to apply way.  

In practice only the first few kernels are used on the assumption that the contribution 
of the higher order kernels falls off rapidly. Systems that can be adequately 
represented by a Volterra series with just a few terms are often called a weakly or 
mildly nonlinear system.  



A valid Volterra series representation means valid Generalised Frequency Response 
Functions(GFRF’s). The GFRF’s are obtained by taking the multi-dimensional 
Fourier transform of )(nh :  
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The generalized frequency response functions represent an inherent and invariant 
property of the underlying system, and have been widely used in the analysis and 
characterization of nonlinear phenomena(Schetzen, 1980).   

In the nonlinear oscillation problem, the excitation is in sinusoidal format as  
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The first order response )(1 ty can be derived from (3), in the view of (5), as 
(Schetzen, 1980)  
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Here ‘Re’ means real part of a complex number. Similarly, the second order response 
)(2 ty and the third order response )(3 ty can be expressed in terms of the second order 

and the third order FRFs as in (7) 
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and in (8), respectively 
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The total response can be obtained by combining (6)—(8) as 
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By defining  
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the analysis of the response of a nonlinear oscillation in (9), in terms of the 
fundamental frequency and harmonics, can then be readily obtained using the first 3 
orders of GFRFs as 
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where  
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A typical example showing the advantages using a Volterra series model is the 
Wiener system. Figure 1 shows the schematic depiction of the Wiener model, which 
consists of a linear dynamic L followed by a static nonlinearity 
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Fig. 1 Wiener model 

A nonlinear differential equation model between the excitation )(tu and the response 
)(ty is not directly available. But this type of system can be succinctly represented by 

a finite order Volterra series model  
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and accurately solved by the algebraic approach using GFRFs in (13), following the 
procedure in (9)—(11). 
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Despite the effectiveness and usefulness shown in many nonlinear system analyses, it 
has been clear that many severely nonlinear phenomena, such as sub/super-harmonics, 
cannot be represented by the Volterra series. In the next section, an attempt is made in 
order to extend the computational benefits of the Volterra representation—in the 
frequency domain—to the approximation of the solution of subharmonic oscillations, 
generally at higher accuracies.  
 
3. Subharmonic system representation and estimation in the 

frequency domain 
3.1 Representation of subharmonic oscillation in the frequency domain 

Subharmonic oscillation is where the excitation frequency is an integral multiple of 
the oscillation frequency. Subharmonic oscillations are basically frequency domain 
phenomena, but the analysis has been mainly carried out in the time domain using for 
example the bifurcation diagram in the literature.  The analytical computation of 
approximation solutions for subharmonic oscillations has also been reported using the 
harmonic balance method (Stoker, 1950) and using the Krylov-Bogolybov 
method(Landa 2001), etc.   

Subharmonic systems cannot generally be represented by Volterra series in the time 
domain due to the Periodic steady state theorem [Boyd et al, 1984] which states that 
the steady state response of a Volterra series model will have the same period as the 
periodic input.  However, it will be shown below that this restriction in the time 
domain will not prevent frequency domain Volterra style expression and benefits 
being generalised to the analysis of subharmonic oscillations in the frequency domain.  

Consider a subharmonic system example. Figure 2 shows a Bifurcation Diagram and 
the frequency domain counterpart, a response spectrum map (RSM) (Billings and 
Boaghe, 2001), of the Duffing equation (14).  
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Fig. 2. (a) Bifurcation diagram and (b) response spectrum map for the Duffing 

oscillator (14) with  m=1, c=0.03, 1k =0.8, 3k =0.15 and sec/3 rad  

 

It can be seen from Figure 2 that initially when the excitation amplitude A is small, 
there is a dominant fundamental frequency present and very weak higher odd order 



harmonic components.  When A reaches 5.3, there is a sudden behaviour change, with 
the steady and strong presence of both a 1/3 subharmonic and the fundamental 
harmonic, together with weaker harmonic components at higher odd multiples. This is 
a typical weakly nonlinear to severely nonlinear change. When A reaches 7.8, the 
system is back to weak nonlinearity. The oscillatory solution for the above 
subharmonic range will have the following form 




)sin()cos(

)sin()cos()sin()cos( )(

3
5

3/53
5

3/5

3/33/33
1

3/13
1

3/1

tbta

tbtatbtaty




           (15) 

 By looking at the link between (9) and (11) in the weak nonlinearity framework, it is 
both intuitive and reasonable to assume that (15) can have a similar frequency domain 
expression as in (9), in terms of the auxiliary ‘GFRFs’ )(),( 3/33/1  HH and )(3/5 H  etc, 

to give (16).  
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It can be seem from (16) that the 3rd order subharmonic 1/3   is made up of 
contributions from all odd orders of the auxiliary ‘GFRFs’, namely )(),( 3/33/1  HH and 

)(3/5 H  etc. Similarly the fundamental frequency has contributions 

from )(and)( 3/53/3  HH etc, and so on. In this sense the subharmonic system can now 

have a Volterra-like representation in the frequency domain, making it possible to 
obtain a solution using algebraic approaches if the auxiliary ‘GFRFs’ are known.  

To extend the above representation into a general form to address the n-th order 
subharmonic, a unified representation of subharmonic systems, generalised from (16), 
in the frequency domain, including the integer even and odd multiples, can be 
expressed as 
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(17) can be seen as a generalisation of the traditional frequency domain Volterra 
representation into the subharmonic situation. Unlike the traditional frequency domain 
Volterra kernels, the GFRFs, which can be obtained from parametric differential and 
difference models, the auxiliary ‘GFRFs’ in (17) will be determined by experimental 
excitation-response data, which will be explained in detail in subsection 3.2.  

 
3.2 Estimation of the auxiliary ‘GFRFs’ for subharmonic oscillation 

There has been a number of methods proposed to estimate the GFRFs using non-
parametric method(Nam and Powers, 1994;Cho and Powers, 1994;Boyd et al, 1983). 
But these methods can not be used in the estimation of the auxiliary ‘GFRFs’ in (17), 
in the subharmonic situation. For example, the FFT based method(Powers and Nam, 
1994) is derived based on a time domain Volterra representation, which does not exist 
for subharmonic systems. Recently Li and Billings(2011) proposed a new method of 
estimating the GFRFs using time domain data, which can be extended to address the 
problem of estimation of the auxiliary ‘GFRFs’ in the presence of subharmonic 
oscillations.   

It is assumed that the subharmonics occur over the excitation amplitude range   
),( AUALA . Then (17) can be re-expressed as 
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where  
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using the definitions 
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From (19), the odd multiples of the lowest subharmonics will be generated by odd 
order ‘GFRFs’, and even multiples of lowest subharmonics will be generated by even 
order ‘GFRFs’.  

The whole procedure of estimating the auxiliary ‘GFRFs’ will consist of two steps. 
First, select M excitation amplitude points 

MiAi ,2,1   ,   

At each excitation amplitude, the excitation-response data are collected and used to 
estimate the d.c term and the coefficients nka / and nkb /  for each non-negligible 

frequency at different excitation amplitudes using a Least Square(LS) procedure 

based on (18).  The results are M pairs of estimates of Miba i
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i

nl ,2,1,ˆ andˆ ][
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/  with 

M>N/2+1—here N is the order of the auxiliary ‘GFRFs’ that need to be determined.  

Next, by assuming that the auxiliary ‘GFRFs’ in (19) remain invariant over the whole 
excitation amplitude range ),( AUALA where the subharmonic exists, then feed the 

estimated coefficients nka /
ˆ and nkb /

ˆ  at each amplitude into (21) 
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Standard Least Square can then be applied to (21) to obtain )(

/
ˆ l

nkR  and )(
/

ˆ l
nkI . 

The accuracy of the estimation depends on two factors, the number of the harmonic 
frequencies l and the order of auxiliary ‘GFRFs’ N, chosen from (18) and (19) 
respectively.  

  
4. Illustrati ve examples 
Two examples will be shown in this section to demonstrate the effectiveness of the 
proposed method. The first example is the analysis of 1/2 subharmonic oscillation for 
a quadratic system, and the second example is the analysis of a 1/3 subharmonic 
oscillation for a Duffing oscillator which has been extensively studied before using  
traditional analytic approximation methods, whose results will be compared with the 
new method. 

   
4.1 Quadratic nonlinear oscillation 

Consider a nonlinear oscillator with quadratic nonlinearity  

 )cos()()()()( 2

21 tAtyktyktycty                         (22) 

with c=0.2, k1=1,k3=0.1. Eqn (22) will have a 1/2 subharmonic at  =2, which is 
clearly shown in the RSM in Figure 3b. Combined with the response curve in Figure 
3a it can be found that initially a relatively weak 1/2 subharmonic appears at 

)6.6,2.6(A , followed by a strong 1/2 subharmonic appearance at )2.12,6.6(A . 
When the excitation amplitude is greater than 12.2, the system becomes unstable. The 
current study will focus on the )2.12,6.6(A section with the 1/2 subharmonic.   

 

 
Fig 3. (a) Response amplitude (b) the RSM: for system (19) at  =2 

System (22) was simulated at a sampling frequency 100Hz using a Fourth order 
Runge-Kutta algorithm. It can be seen from Figure 3b that the dominant harmonics in 
the response are the first 3 harmonics, that is, l=1, 2, 3 in (18). 28 pairs of estimates 
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/   along the excitation amplitude were obtained from (18) 

using a LS routine, each LS estimation involving 1000 excitation-response data. The 

amplitude of the estimated 1/2 subharmonic, that is, 2821,ˆ ˆ ][

2/1
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2/1 ,,,iba ii  , is 

shown in Figure 4(solid line). These estimates ][

/
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/
ˆ andˆ i
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i

nl ba were fed into (21) to obtain 

the amplitude invariant auxiliary 9th order ‘GFRFs’ using another LS routine. The LS 

result of )(
2/

)(
2/

ˆˆ l
k

l
k IjR  for the 1/2 subharmonic amplitude case is plotted in Figure 

4(dashed line), which indicates that the order of the auxiliary ‘GFRFs’ is sufficient for 
frequency domain representation in terms of the accuracy. This is also the case for 
other harmonics as well. The complete results for the auxiliary ‘GFRFs’, which are 
invariant over the whole excitation amplitude section )2.12,6.6(A , are listed in 
Table 1.  

 
Fig. 4. The amplitude of ½ subharmonic component obtained by LS estimate in left 

side of (21), i.e, ][
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)1(

2/1Ĥ  -13.2433 +18.5018j )0(

2/6Ĥ  0.0200 
)0(

2/2Ĥ  0.7169 )2(

2/6Ĥ  0.0001 + 0.0062j 
)2(

2/2Ĥ  -0.3190 + 0.1472j )1(

2/7Ĥ  0.0577 - 0.0672j 
)1(

2/3Ĥ  5.6862 - 7.3720j )3(

2/7Ĥ  6.5682e-04-  6.1868e-04j 
)3(

2/3Ĥ  0.0183 - 0.0216j )0(

2/8Ĥ  -6.0694e-04 
)0(

2/4Ĥ  -0.2242 )2(

2/8Ĥ  6.4537e-06-  1.9921e-04j 
)2(

2/4Ĥ  -0.0008 - 0.0625j )1(

2/9Ĥ  -0.0014 + 0.0016j 
)1(

2/5Ĥ  -0.8654 + 1.0519j )3(

2/9Ĥ  -2.1165e-05+  1.8585e-05j 
)3(

2/5Ĥ  -0.0065 + 0.0068j   

Table 1. The auxiliary ‘GFRFs’ estimated for the subharmonic system (22) over 
)2.12,6.6(A  



Arbitrarily selecting an excitation amplitude point A=7.83, which was not used in the 
above estimation procedure, and computing the solution using the auxiliary ‘GFRFs’ 
in Table 1 gives 
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          (23) 

Solution (23) is irrespective of the sampling interval.  

In Figure 5, the algebraic solution as in (23) is compared with the numerical solution 
from (22), showing a perfect overlap. This suggests that the auxiliary ‘GFRFs’ in 
Table 1 serve as invariant ‘kernels’, like the traditional GFRFs for  weakly nonlinear 
system,  over the whole excitation range )2.12,6.6(A , therefore they can be used in 
the accurate analysis of the subharmonic oscillation over the excitation range 
concerned.  

 
Fig. 5. Comparison of the numerical solution from (22) (Solid) and the algebraic 

solution in (23) (Circle) 
 

The amplitude of individual harmonic oscillation components can be described as in 
(24) which are shown in Figure 6. It can be seen from Figure 6 that the 1/2 
subharmonic has a strong presence throughout the whole excitation range, much 
stronger than that of the fundamental frequency in most of the range except in the 
beginning and end. It also show that the 3/2 super-subharmonic is relatively weak 
compared with the dominant 1/2 subharmonic and the fundamental frequency.  
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Fig. 6. The amplitude of each harmonic components in the response: 2
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4.2 Cubic nonlinear oscillation 

The second example is the symmetric Duffing oscillator which takes the form in (14), 
with very simple structure but exhibits extremely rich nonlinear phenomena including 
subharmonics, which has been studied extensively in the past decades. The results 
using the new method in this paper can therefore be compared with those by the 
traditional analytic approximation based methods.   

In the mechanical framework of (14),  m is the mass, c is the damping, 1k  is 
proportional to the stiffness of the spring, and 3k is the cubic stiffness.  

The RSM for (22) is given in Figure 2b, for m=1, c=0.03, 1k =0.8, 3k =0.15 and 
sec/3 rad as in (14). The RSM was obtained using an FFT routine, which shows 

a 1/3 subharmonic, together with its odd multiples. Because there are no even 
multiples of 1/3 subharmonic therefore the d.c. term is zero. Qualitatively in the RSM 
the third order multiple, that is, the 3

5 component is weak, but there is no specific 
measurement of the weakness. For quantitative analysis, a useful measurement 
provided by the OLS procedure(Billings, et al., 1988; Wei and Billings, 2004) called 
Error-Reduction-Ratio(ERR), which indicates, in terms of energy, the contribution of 
each regressor in the LS estimation, can be adopted here. In our case the ERR gives 
the percentage contribution of each harmonic in the LS estimation in (18), plotted in 
Figure 7.  

 
Fig. 7. The energy contribution of each harmonic components in the response: 3

1 --

Solid,  --Dashed, 3
5 -- Circle 



Figure 7 suggests a predominant 1/3 subharmonic at the beginning with decreasing 
strength as the amplitude increases, in contrast to that of the fundamental harmonic. 
At all amplitude points, the contribution from 5/3 harmonic is negligibly small; 
therefore the response can be sufficiently described by the lowest two harmonics, 
namely 1/3 subharmonic and 3/3 fundamental harmonic.   

 
)1(

3/1Ĥ  -1.0960 - 0.3785j )1(

3/3Ĥ  1.3709 + 0.1545j 
)3(

3/3Ĥ  -0.1317 - 0.0039j )1(

3/5Ĥ  -0.2523 - 0.0177j 
)3(

3/5Ĥ  0.0016 + 0.0006j   
Table 2. Auxiliary ‘GFRFs’ for subharmonic system (14) 

The next step is the estimation of the auxiliary ‘GFRFs’ sufficient for producing 
accurate harmonics over the whole subharmonic amplitude range. Up to 5th order 
GFRFs are adopted in the LS procedure in (21) using 13 estimates from the previous 
step, with the estimates listed in Table 2. 
The solution calculated using the auxiliary ‘GFRFs’ in Table 2 at an arbitrarily select 
excitation amplitude point A=6.48 is given in (25) and compared with the numerical 
solution in Figure 8, which again shows a perfect agreement.  
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Fig. 8. . Comparison of the numerical solution for (14) (Solid) and the 

algebraic solution using GFRFs in Table 2. (Circle) 
 

In fact the auxiliary ‘GFRFs’ in Table 2 can give a very accurate solution at any 
amplitude value within (5.3, 7.8). Stoker (1950, p109) provided an approximation of 
the 1/3 subharmonic solution for the damped Duffing oscillator (14), which includes 
the lowest two harmonics,  based on the harmonic balance method, as 
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where the excitation u is given by )sin()cos( tGtHu   with 22 GHA  , 

while the 1/3 subharmonic oscillation has a phase 0, that is, )cos()( 3
1

3/13/1 tAty  . 



The comparison of 1/3 subharmonic oscillation amplitude between the algebraic 
method using the auxiliary ‘GFRFs’ and the Stoker’s using (26) is given in Figure 9, 
which shows very accurate estimates by the auxiliary ‘GFRFs’ along the whole 
amplitude range. This means that the behaviour of the subharmonic oscillation over 
this amplitude range can be fully characterised by the five auxiliary ‘GFRFs’ in Table 
2. Figure 9 also shows that initially the 1/3 subharmonic amplitudes obtained from (26) 
are close to the true values, but quickly move away. When A is greater than 6.74, 
equation (26) will no longer give a valid real solution, leaving an unfinished curve. 
This suggests that even in the current example where the response can be sufficiently 
described by the first two lowest harmonics on which the harmonic balance solution 
(26) is based, its accuracy is still not very satisfactory and reliable, and therefore it 
can only be used in many real situations as a qualitative measure.   

 
Fig. 9. Comparison of the 1/3 subharmonic estimates 

 

It is interesting to see the behaviour of the harmonics in and out of the subharmonic 
region. When A<5.3, the oscillator (14) has a predominant fundamental harmonic 
oscillation  , as can be seen from Figure 2, with hardly any superharmonics such as 

 5,3  etc. During this very ‘weak’ nonlinear region, the response can be almost fully 
characterised by the first order frequency response function with the amplitude 
proportional to   
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When 5.3<A<7.8, the fundamental harmonic will be governed by )3(

3/3Ĥ  and )3(

3/5Ĥ . 

Considering from Table 2 that the )3(

3/5Ĥ  is very small compared with )3(

3/3Ĥ , the 

fundamental harmonic for 5.3<A<7.8 almost fully relates to )3(

3/3Ĥ  with the amplitude 

proportional to     

 13180.00.0039j - 0.1317-ˆ )3(

3/3 H                              (28) 

The result (28) is close to (27) in terms of amplitude (and also the phase as one can 
easily see), suggesting that in this case the behaviour of the fundamental harmonic in 
the severe nonlinear region can almost replicate the path described by the transfer 



function in the weak nonlinear region, as if the linear frequency response function is 
in operation as usual. This effect is shown in Figure 10, indicating that the severe 
dynamic change is mainly due to the introduction of 1/3 subharmonic oscillation, 
which predominates over most of the amplitude range, but in a gain compression 
manner, that is, its amplitude decreases as the amplitude of the excitation increases. 
The mechanism behind this abrupt bring-in of additional subharmonic oscillation on 
top of the normal fundamental harmonic remain largely unexplained and needs further 
investigation.    

 
Fig. 10. Comparison of the amplitudes of harmonics 

 
5. Conclusions 
Volterra series analysis had been widely applied in the representation, analysis and 
control of nonlinear systems, and has also been used as an important alternative to the 
analytical approximation methods in the approximation of solutions of nonlinear 
oscillations using the Volterra frequency domain computational advantage. However, 
this advantage has until now been limited to weakly nonlinear oscillations. 

The new approach presented in this paper is a generalisation of the frequency domain 
Volterra kernels to the representation and analysis of a class of severe nonlinear 
phenomena called subharmonics, which generally could not be studied using 
traditional Volterra analysis. By introducing a set of sampling independent and 
amplitude invariant ‘kernels’ in the frequency domain, the solution and analysis of 
subharmonic oscillations containing any number of harmonics can be efficiently 
performed in an algebraic way within the required accuracy. To some extent, new 
frequency representations can be regarded as a sort of inherent frequency domain 
‘kernels’ analogous to the classical GFRFs for weakly nonlinear systems. This kind of 
representation can also be easily modified to accommodate other types of severe 
nonlinearities such as superharmonics. The new approach has therefore extended the 
GFRFs based algebraic method to the solution of a much larger family of nonlinear 
oscillations.   

Simulations, as in the two illustrative examples, show that in many cases there is a 
presence of a predominant subharmonic where the amplitude of the subharmonic is 
greater than that of the fundamental harmonic, which may be particularly interesting 
(Ludeke, 1951). In many situations the predominant subharmonics are not 
wanted(Ludeke, 1953) and the new kernels for the subharmonic systems may play a 
role in the analysis and design of nonlinear filters. This will be investigated in future 
studies.   
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