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 
Abstract—Volterra series theory has a wide application in the 

representation, analysis, design and control of nonlinear systems.  
A new method of estimating the Volterra kernels in the frequency 
domain is introduced based on a non-parametric algorithm. Unlike 
the traditional non-parametric methods using the DFT 
transformed input-output data, this new approach uses the time 
domain measurements directly to estimate the frequency domain 
response functions.  
 

Index Terms—GFRF’s, Non-parametric, OLS, Volterra series. 
 
 

I. INTRODUCTION 

HE Volterra series model, first proposed by Volterra [1], is 
a direct generalization of the linear convolution integral and 

provides an intuitive representation in a simple and easy to 
apply way. Volterra theory quickly received a great deal of 
attention in the field of electrical engineering, mechanical 
engineering, and later in the biological field, as a powerful 
approach for modeling nonlinear system behaviors. From the 
late 1950s, there has been a continuous effort in the application 
of Volterra series to nonlinear systems theory. Summaries of 
major contributions in the application of Volterra series 
modeling for the representation, analysis and design of 
nonlinear systems can be found in [2]-[5].  

The Volterra series is associated with so-called weakly 
nonlinear systems, which can be well described by the first few 
kernels with the higher order kernels falling off rapidly. The 
frequency domain version of the Volterra kernels, called 
generalized frequency response functions(GFRF‘s), which can 
be obtained by taking the multiple Fourier transform of the 
Volterra kernels, has also been extensively studied and proved 
to be very powerful in characterizing nonlinear phenomena [6].   

Due to the usefulness of the generalized frequency response 
functions, a number of estimation methods have been proposed.  
There are generally two classes of methods for the estimation of 
GFRF -- parametric and non-parametric methods.  For the 
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parametric method, the input-output data measurements are 
used to identify a NARMAX model, from which a NARX 
model, including purely input-output terms after discarding the 
terms associated with the noise model, can be derived. Then the 
probing method [7] can be applied on this NARX model to 
obtain the GFRF‘s. The non-parametric method usually makes 
use of higher order spectral analysis based on the frequency 
domain Volterra model [8]-[12]. Boyd et al. [13] proposed a 
non-parametric method of estimating the GFRF‘s based on the 
separation of the contribution of each Volterra kernel, using 
harmonic inputs. Due to the computational complexity 
associated with non-parametric methods, the Volterra kernels 
had to be restricted to low orders, for example, up to cubic 
nonlinearities.   

This paper is primarily concerned with the problem of 
estimating the GFRF‘s from harmonic input-output data for 
cubically nonlinear systems. By expanding the algebraic 
expression of the response analysis in the frequency domain, it 
is shown that the GFRF‘s can be estimated directly from 
input-output measurements.  

The paper is organized as follows. Section 2 states the 
preliminaries. Section 3 studies the estimation of the GFRF‘s 
using the simplest Volterra model form, that is, quadratic 
nonlinear systems. Section 4 discusses the more complex 
cubically nonlinear system case. In section V the problem of 
determination of the excitation level is addressed.  Finally in 
section 6, conclusions are given. 

 

II. PRELIMINARIES  

Volterra series modeling has been widely studied for the 
representation, analysis and design of nonlinear systems. For a 
SISO nonlinear system, where )(tu and )(ty are the input and 

output respectively, the Volterra series can be expressed as 

                      


1
)()(

n
n tyty                                             (1.a) 

and  )(tyn  is the ‗n-th order output‘ of the system 
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where ),,( 1 nnh    is called the ‗nth-order kernel‘ or 
‗nth-order impulse response function‘. If n=1, this reduces to 
the familiar linear convolution integral. 

The discrete time domain counterpart of the continuous time 
domain SISO Volterra expression (1) is 
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where   
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In practice only the first few kernels are used on the 
assumption that the contribution of the higher order kernels falls 
off rapidly. Systems that can be adequately represented by a 
Volterra series with just a few terms are called weakly nonlinear 
systems.  

For a weakly nonlinear system up to third order Volterra 
series representation, the frequency domain expression of the 
discrete time Volterra model (2) is given as 
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where )( and )(  UY are the Fourier Transforms of the output 

response and input respectively, and ),,( 1 nnH   is called the 

nth order Generalized Frequency Response Function (GFRF) 
which is obtained by taking the multi-dimensional Fourier 

transform of )(nh :  
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The generalized frequency response functions represent an 
inherent and invariant property of the underlying system, and 
have proved to be an important analysis and design tool for 
characterizing nonlinear phenomena.  

In practice, by taking into account the output measurement 
noise (generally  zero-mean white noise), (3) is replaced by  
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The excitations used in the application of non-parametric 
methods can be either Gaussian white noise or non-Gaussian 
harmonic inputs. For instance, reference [10] investigated the 
problem of estimation of GFRF‘s and system identification of a 
cubically nonlinear system based on (5), subject to a 
non-Gaussian input. Although (5) is nonlinear between the 
spectrum of  the measured input/output )(ku and )(ky , i.e., 

)( and )(  YU , it is linear between )(Y and the unknown 

GFRF‘s )( and)(),( 321  HHH ,  and the standard Least 

Squares type algorithms can be readily applied to obtain 
different orders of transfer functions. The possible 
disadvantages of the above purely frequency domain based 
approaches are that large data sets are often needed and also the 
frequency domain noisy term )( , obtained from time domain 

white Gaussian noise )(ke , may no longer be white, potentially 

resulting in bias in the estimates obtained from a Least Square 
procedure. 

Alternatively, the steady-state response of the nonlinear 
system that can be adequately represented by up to third order 
Volterra kernels, excited by a harmonic signal at frequency , 
is given [2] by 
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  (6) 

where A is the amplitude of the input signal and )(ke is a 

zero-mean Gaussian white noise. ‗Re‘ represents the real part of 
a complex number.  

Equation (6) forms the basis of the current study which 
suggests an alternative non-parametric approach of estimating 
generalized frequency response functions directly from noisy 
time domain data.  The study begins with quadratic nonlinear 
systems in Section 3, followed by cubic nonlinear systems in 
Section 4. 

   

III. ESTIMATION OF FREQUENCY RESPONSE FUNCTIONS OF 

QUADRATICALLY NONLINEAR SYSTEMS  

A. Formation of the Estimator  
Because it is the simplest special case of the finite Volterra 

series model, the quadratic Volterra model class has been 
studied fairly extensively.  

By considering the first two Volterra kernels in (6), the output 
response )(ky can be expressed as  
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Defining  
 )()()( 111  jIRH                             (8) 

where )(1 R and )(1 I are the real and imaginary parts of 

)(1 H respectively. For simplicity, )(1 R and )(1 I will be 

written in abbreviated form as 1R and 1I .  

Then the first term in the right-hand side of (7) can be 
expanded as 
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Similarly by defining  
),(),(),( 222  jIRH               (10) 

and noting that 02 ),( RH   is a constant, the second and 

the third terms on the right-hand side of (7) can be expanded as 
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Combining (9) and (11) yields 

)()
2

(2

)]2sin()
2

(2[)]2cos()
2

(2[

)]sin([)]cos([)(

2

0

2

2

2

2

11

ke
A

R

k
A

Ik
A

R

kAIkARky











      (12) 

For k=1 to N, (12) can be arranged in the matrix form as 
 ǼXșY                                       (13) 

where TyNy )]1()([ Y , TRIRIR ][ 02211ș , 
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The estimation of the unknown frequency response functions 
TRIRIR ][ˆ

02211ș can now be derived from (13) using a 

standard least square procedure.  If the truncation error is 
sufficiently small, on the assumption that third and higher orders 
of Volterra kernels make a negligible contribution to the output, 

then the estimation ș̂  will be unbiased. Unlike the previous 
complex estimator based on (5), the new estimator is in the real 
domain based on time domain measurements. 

 
B.  Simulation Example and Discussion 

Consider a system described as 

                        )(2 tucybyyay                             (15) 

where )cos )( t(Atu  . 

In the continuous time domain, the GFRF‘s can be derived 
[14] as 
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This system (15), which has a quadratic nonlinear term 2y , is 

not a quadratically but infinitely nonlinear system in terms of the 
Volterra series representation because the nonlinearity is on the 
output. However for a considerable range of input level the 
system can be adequately represented by up to second order 
Volterra kernels, and importantly all the coefficients of the 
underlying system (15) can be fully characterized by the first 
two orders of Volterra kernels or the associated frequency 
response functions.  

Once the estimates of 1Ĥ  and 2Ĥ  are available, by using 

(16), the original continuous time system parameters can be 

extracted from 1Ĥ  and 2Ĥ as  
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To illustrate the new GFRF estimation algorithm, system (15) 
was excited by a single sinusoidal input at A=2 
and secrad /6.1  for 1,2.0  ba and 1.0c . A total 

amount of 2000 input and output data were collected at a 
sampling time secTs 01.0  and a zero-mean white noise was 

added to the output with SNR =40 dB.  
Before proceeding using the new algorithm, the traditional 

parametric NARMAX procedure was applied. First the ideal 
situation, noise-free input /output data [15], were considered in 
the NARX modeling. The resulting model was obtained as 
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)2(99800)1(99791)(
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k-  y. -k-  y. k y


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      (18) 

It can be easily verified that the GFRF‘s from the discrete 
time model (18) are exactly the same as the GFRF‘s from the 
original continuous time model in (16) , along the entire 
frequency axes. This suggests that the NARX modeling 
procedure is the simplest and most efficient choice for the 
GFRF‘s estimation in the noise-free situation.  

When noise is present, however, the identification of a 
NARMAX model that can provide satisfactory frequency 
domain estimation is not a trivial task. For example, a 
NARMAX model whose terms are selected from a pool of 
candidate terms, using the noisy measurements, is given as  
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
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(19)                    
where e  represents the noise model terms.  

Equation (19) has a very good model predicted output (MPO) 
and model validity test [16]—[19] shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Correlation test of the NARMAX modelling of (19) 
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The estimation of 1H  and 2H  from (19) at 6.1 is shown 

in Table I, compared with the true values from the original 
system (15), and the reconstructed parameters of continuous 
time model (15) from Table 1 using (17) are shown in Table II.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is clear that there is bias on the reconstructed estimates of 

the systems parameters in Table II. This suggests that, though 
the NARMAX model (19) is a very good fit in the time domain 
as the MPO and correlation based model validity tests indicate, 
its ability of capturing the frequency domain features of the 
underlying system is not always reliable, as indicated in this 
simple example. Improved frequency response function 
estimation is possible if a larger pool of candidate model terms 
is fed into the NARMAX model estimator. The difficulty is that 
without a frequency domain validity guideline, it is sometimes 
not easy to know when to stop the search for a model that is not 
only valid in the time domain but also in the frequency domain.  
Now, the proposed new procedure (12)—(14) is applied to 

obtain the 1Ĥ and 2Ĥ  using a Least Squares estimator. The 

results are shown in Table III which are very satisfactory.  
 
 
 
 
 
 
 
 
 
 
 
 

The reconstructed parameters of the continuous time model 
(15) from Table III using  (17) are shown in Table IV, which is 

a significant improvement in accuracy compared with the 
results by the parametric method in Table II.  

 
 
 
 
 
 
 
 
 

 

IV.  ESTIMATION OF FREQUENCY RESPONSE FUNCTIONS OF 

CUBICALLY NONLINEAR SYSTEMS 

The literature associated with the cubic Volterra series model 
is substantially smaller compared with that associated with the 
quadratic Volterra model due to the significantly greater 
complexity induced.  In terms of frequency response function 
estimation for up to third order Volterra representation, this 
procedure is not as straightforward as the quadratic case in 
Section 3. In fact, the main complication is that, unlike the 
quadratic Volterra model case where the first harmonics in the 
output are all due to the linear response function, for a cubic 
Volterra model both first and third order frequency response 
functions make contributions to the first harmonics. Therefore 
additional efforts are needed to solve the separation of 
contributions between 1H and 3H .  

First, by defining  
                    ),,(),,(),,( 333  jIRH      (20) 

the fourth term in (6) can be expanded as 
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which makes a contribution purely to the third harmonics )3(   

in the response.  
The problem arises with the fifth term in (6). By defining  
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the fifth term in (6) can be expanded as 
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which makes a contribution to the first harmonics, mixed up 
with the contribution from the linear kernel, shown in (9).  

The overall expansion of (6) for the first three Volterra kernel 
terms, by combining (12), (21) and (23), is given as 

TABLE I 

ESTIMATION OF 1H  AND 2H  BY THE 

NARMAX MODEL (19) 

 
From Eqn 

(15) –True 

From Eqn 
(19) 

--Estimates 

)(1 H  
-0.6151 - 

0.1262j 
-0.6110 - 

0.0993j 

),(2 H  
0.0038 + 

0.0019 j 
-0.0040 + 

0.0014 j 

02 ),( RH 

 
-0.0394 -0.0310 

TABLE II 
ESTIMATION OF THE PARAMETERS OF THE ORIGINAL 

CONTINUOUS TIME SYSTEM (15) USING (17) 
 a  b  c  

True value 0.2 1.0 0.1 

Estimates 
from GFRF‘s by 

(19) 
0.1620 0.9654 0.0780 

 

TABLE III 

 Estimation of 1H  and 2H  of system (15) using the 

new approach 

 From Eqn 
(15) –True 

From 
new 

approach 

111 )( jIRH   
-0.6151 - 

0.1262j 
-0.6100 - 

0.1250j 

222 ),( jIRH   
0.0038 + 

0.0019 j 
0.0043 + 

0.0022j 

02 ),( RH   -0.0394 -0.0397 

TABLE IV 
 ESTIMATION OF THE PARAMETERS OF THE 

ORIGINAL CONTINUOUS TIME SYSTEM (15) USING (17) 

 a  b  c  

True value 0.2 1.0 0.1 

Estimates 
from new 
approach 

0.2015 0.9867 0.1011 
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It is possible to define 
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From which the unknown frequency response function data 
TIRRIRIR ][ˆ

33022ș can be derived using a standard Least 

Square procedure. In order to separate in (25) the  1R and 

31R from R , and the 1I and 31 I from I , two tests at different 

input levels, denoted by )1(A and )2(A , at the same frequency, 

are required to obtain two sets of estimates, )1(R , )2(R , and 
)1(I and )2(I respectively. Then the final estimates of 

111
ˆˆˆ IjRH  and 31313

ˆˆ),,(ˆ IjRH  can be calculated 

from (25) as 
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The above procedure will be illustrated using the well-known 
Duffing oscillator. 

Consider a Duffing oscillator, with cubic nonlinearity, 
subject to a sinusoidal excitation as 

  )cos(3

31 tAykykycym                    (29) 

where 31  and ,, kkcm are the mass, the damping, the linear 

stiffness and nonlinear stiffness respectively. The nonlinear 
stiffness parameter 3 k  in (29) needs to stay small in order to be 

‗weakly‘ nonlinear for the existence of the Volterra series 
representation. The corresponding GFRF‘s from (29) are  
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        (30) 

 The system (29) was excited at rad/sec 5.1  and  
sec02.0sT  with the parameters  

1.0,5.0,5.1,1 31  kkcm                   (31) 

The excitation is chosen as 2,1),cos()( itA i  where 

2)1( A and 3)2( A . A zero-mean white noise was added to 
each of the outputs with a SNR =40 dB.  The length of the data 

was 2000. The estimation results for 1Ĥ and 3Ĥ  using the new 

algorithm are given in Table V.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By using (30), the original continuous time system 

parameters can be extracted from 1Ĥ  and 2Ĥ as  

TABLE V 

 ESTIMATION OF 1H  AND 3H  FOR THE DUFFING EQUATION (29) 

USING THE NEW APPROACH 

 Eqn (29) –True From new approach 

111 )( jIRH   -0.2154- 0.2769 j -0.2159 - 0.2776 j 

33

3 ),,(

jIR

H




 2.0616e-04 -1.7152e-05  j 2.011e-04 -1.8124e-04  j 

3101

3 ),,(

jIR

H




 0.3729e-03-0.1468e-02 j 0.4595e-03-0.1579e-02 j 
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It is clear from Table VI that the reconstructed continuous 
time system parameters, comparing with the true system 
parameters in (31),   are very satisfactory.  
 
 
 
 
 
 
 
 
 

V. THE SELECTION OF LEVEL OF EXCITATION USING OLS 

The new algorithm introduced in the previous sections is 
based on the assumption that the underlying system is weakly 
nonlinear in the sense that it can be well described by the first 
few Volterra kernels, with the higher order kernels fading off 
rapidly. The accuracy of the results of the new procedure is 
largely dependant on this assumption as are all other 
non-parametric methods, and the significance of the 
nonlinearity of the system, reflected by the Volterra kernel 
order, is associated with the level of the excitation. Either 
under-excitation or over-excitation may result in inaccuracy in 
the estimates.  It is therefore essential to have a measure that can 
provide an indication of the order of the Volterra kernels under 
certain levels of excitation before the final application of the 
new algorithm. One possible measure is based on using the 
orthogonal least squares method (OLS) [20]—[21], which is 
briefly reviewed below.  

Consider a system expressed by the linear-in-the-parameters 
model 

                                     


M

i
ii pz

1
                              (33)  

where Mii ,,1,   are unknown parameters. 

Reformulating equation (33) in the form of an auxiliary 
model yields 

                                    


M

i
ii wgz

1
                           (34)  

where Mig i ,,1,   are the auxiliary parameters and 

Miwi ,,1,   are constructed to be orthogonal over the data 

record such that  

      kjtwtw k
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t
j ,,1,0        ,0)()( 1

1
 


        (35) 

 where N is the length of the data record. 
Multiplying the auxiliary model (34) by itself, using the 

orthogonal property (35) and taking the time average gives 
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Finally define  
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for .,,2,1 Mi   The quantity iERR  is called the Error 

Reduction Ratio and provides an indication of which terms 
should be included in the model in accordance with the 
contribution each term makes to the energy of the dependent 
variable. Terms with associated ERR  values which are less 
than a pre-defined threshold value can be considered to be 
insignificant and negligible. 

For simplicity, the quadratic system (15), with 
1,2.0  ba and 1.0c , was used as an example to illustrate 

the use of OLS in the selection of the amplitude of excitation A  
. Two tests were conducted at different excitation amplitudes at 
frequency secrad /2  . First, the amplitude of the input 

was chosen at  A=0.3 and the response was corrupted by a 
zero-mean white noise with SNR =40 dB. The OLS was applied 
to obtain the estimates of linear and quadratic frequency 
response functions, together with the values iERR , shown in 

Table VII.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be seen from Table VII that at this level of excitation, 
the contributions by the quadratic term 2H , i.e., 2R , 2I and 

0R , are extremely small compared with the contributions from 

the linear term. This means that the quadratic kernel 
contribution has a very small SNR, consequently the LS 
estimation results for the quadratic terms are more affected by 
the presence of noise, leading to unreliability in the estimates. 
The almost negligible sum of ERR  of the quadratic terms, i.e., 
from terms 2R , 2I and 0R , suggests that the system can be 

regarded as linear at this level of excitation, therefore this can be 
considered as under-excited.   

Now the amplitude of input was chosen at 5A and again a 
zero-mean white noise was added to the response with SNR =40 
dB. The OLS results are given in Table VIII.  

 

TABLE VI 
 ESTIMATION OF PARAMETERS OF ORIGINAL 

CONTINUOUS TIME SYSTEM (29) USING (32) 

 c  1k  3k  

True value from 
(31) 

1.5 0.5 0.1 

Estimates from 
(32) 

1.4960 0.5037 0.0991 

 

TABLE VII 

 ESTIMATION OF 1H  AND 2H  OF SYSTEM (15) AT 

3.0A USING OLS  

 
Result by 

Eqn (15) 
–True 

Result by 
OLS iERR  (%) 

1R  -0.3275 -0.3276 97.3370 

1I  -0.04367 -0.04349 1.6999 

2R  6.902e-04 -9.519e-04 1.867e-05 

2I  2.275e-04 1.980e-03 7.8622e-05 

0R  -0.01092 -0.01459 8.704e-03 
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It is clear by looking at the iERR  values from Table VIII that 

the overall contributions by the quadratic terms, especially the 

0R  term are no longer negligible. As a result, the accuracy of 

the estimates of the quadratic response functions becomes very 
satisfactory. Therefore in terms of GFRF‘s estimation for 
system (15) using the new approach, the amplitude used in the 
second test, 5A , is a much better choice, following the 
suggestions of iERR . In addition, the sum of the values iERR of 

all the linear and quadratic terms is 99.0214%, indicating that 
this system at this amplitude level can be sufficiently described 
by up to second order Volterra kernels.   

 It needs to be pointed out that the approach presented in this 
paper can be extended to admit 2-tone or multi-tone sinusoidal 
inputs. For example, if the input is a 2-tone signal in the form  




2

1
)cos )(

i
ii k(Aku                              (38) 

and the system can be sufficiently described by first and 
quadratic Volterra kernels, then the single-tone response 
expression (7) can be extended to 
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    (39) 
Equation (39) can be further expanded to a form similar to 

(12) involving real and imaginary parts of the individual 
GFRF‘s, from which ),( 11 H  ),( 21 H ),,( 112 H  

),( 222 H and ),( 212 H etc can be estimated using the LS 

procedure illustrated in Section 3. The only concern for the 
quadratic system under a 2-tone sinusoidal input is the 
separation of the contributions by ),( 112  H and 

),( 222  H , which are two d.c. components. This can be dealt 

with by applying the 2-tone signal twice at 2 levels for each 
frequency. 

VI. CONCLUSIONS 

A new non-parametric algorithm, which directly uses the time 
domain input-output measurements but avoids the direct 
differentiation of these data, has been derived to estimate up to 
the third order generalised frequency response functions and 
subsequently identify the associated continuous time model. 
This is achieved by expanding the algebraic expression in the 
analysis of the output response using the real and imaginary 
parts of each order of Volterra kernels. The new algorithm has 
the advantage of admitting smaller data sets than the traditional 
spectral analysis based frequency domain non-parametric 
methods.  

Like many other general parameter estimation problems, the 
accuracy of the estimation of the GFRF‘s in this new approach 
depends on the fact that the level of excitation is appropriate. 
That is, the relevant order of nonlinearity is adequately excited. 
The OLS method has superior numerical properties compared 
with the ordinary LS method, in the sense that it can provide 
vital information on the suitability of the excitation level, 
indirectly from the contribution indicators ( ERR ) for each 
Volterra order. 

Although the new approach was illustrated using single-tone 
sinusoidal inputs, the basic idea can be readily extended to 
accommodate 2-tone or even multi-tone inputs, in which case 
the complexity of the procedure will inevitably grow 
dramatically as the number of tones in the input and the order of 
Volterra kernels are increased.  

The continuous time model can be reconstructed from the 
estimated GFRF‘s. A direct extraction of the continuous time 
model for the simple low dynamic order system is possible from 
the GFRF‘s at one single frequency point, as illustrated in this 
paper. When the continuous time model structure is not known a 
priori, or is in a more complicated form, this new procedure can 
be repeated at different excitation frequencies until a sufficient 
number of points have been collected, from which the 
identification of the general form of continuous time model can 
be derived using the approach in [22]. 
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