731 research outputs found
Regularization strategy for the layered inversion of airborne TEM data: application to VTEM data acquired over the basin of Franceville (Gabon)
Airborne transient electromagnetic (TEM) is a cost-effective method to image
the distribution of electrical conductivity in the ground. We consider layered
earth inversion to interpret large data sets of hundreds of kilometre.
Different strategies can be used to solve this inverse problem. This consists
in managing the a priori information to avoid the mathematical instability and
provide the most plausible model of conductivity in depth. In order to obtain
fast and realistic inversion program, we tested three kinds of regularization:
two are based on standard Tikhonov procedure which consist in minimizing not
only the data misfit function but a balanced optimization function with
additional terms constraining the lateral and the vertical smoothness of the
conductivity; another kind of regularization is based on reducing the condition
number of the kernel by changing the layout of layers before minimizing the
data misfit function. Finally, in order to get a more realistic distribution of
conductivity, notably by removing negative conductivity values, we suggest an
additional recursive filter based upon the inversion of the logarithm of the
conductivity. All these methods are tested on synthetic and real data sets.
Synthetic data have been calculated by 2.5D modelling; they are used to
demonstrate that these methods provide equivalent quality in terms of data
misfit and accuracy of the resulting image; the limit essentially comes on
special targets with sharp 2D geometries. The real data case is from
Helicopter-borne TEM data acquired in the basin of Franceville (Gabon) where
borehole conductivity loggings are used to show the good accuracy of the
inverted models in most areas, and some biased depths in areas where strong
lateral changes may occur
Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method
Exact solutions for vibrational levels of diatomic molecules via the Morse
potential are obtained by means of the asymptotic iteration method. It is shown
that, the numerical results for the energy eigenvalues of are all
in excellent agreement with the ones obtained before. Without any loss of
generality, other states and molecules could be treated in a similar way
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
Microbial CO<sub>2</sub> fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S)
Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane (∼2.6 μM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field
CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47(−/−) Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47(−/−) Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn(2+) or Mg(2+)/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration
Are publicly available internet resources enabling women to make informed fertility preservation decisions before starting cancer treatment: an environmental scan?
Background To identify publicly available internet resources and assess their likelihood to support women making informed decisions about, and between, fertility preservation procedures before starting their cancer treatment. Methods A survey of publically available internet resources utilising an environmental scan method. Inclusion criteria were applied to hits from searches of three data sources (November 2015; repeated June 2017): Google (Chrome) for patient resources; repositories for clinical guidelines and projects; distribution email lists to contact patient decision aid experts. The Data Extraction Sheet applied to eligible resources elicited: resource characteristics; informed and shared decision making components; engagement health services. Results Four thousand eight hundred fifty one records were identified; 24 patient resources and 0 clinical guidelines met scan inclusion criteria. Most resources aimed to inform women with cancer about fertility preservation procedures and infertility treatment options, but not decision making between options. There was a lack of consistency about how health conditions, decision problems and treatment options were described, and resources were difficult to understand. Conclusions Unless developed as part of a patient decision aid project, resources did not include components to support proactively women’s fertility preservation decisions. Current guidelines help people deliver information relevant to treatment options within a single disease pathway; we identified five additional components for patient decision aid checklists to support more effectively people’s treatment decision making across health pathways, linking current with future health problems
Use of Artificial Shelters (“Casitas”) as an Alternative Tool for Stock Evaluation and Management of Caribbean Spiny Lobsters in Banco Chinchorro (México)
Evidence of porcine and human endothelium activation by cancer-associated carbohydrates expressed on glycoproteins and tumour cells
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65560/1/jphysiol.2003.054783.pd
Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria
Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering
attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing
candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly
correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across
325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not
coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or
host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape
is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might
allow a greater evolutionary flexibility
- …
