998 research outputs found

    Electronic structure and band parameters for ZnX (X = O, S, Se, Te)

    Full text link
    First-principles density-functional calculations have been performed for zinc monochalcogenides with zinc-blende- and wurtzite-type structures. It is shown that the local-density approximation underestimates the band gap, misplaces the energy levels of the Zn-3d states, and overestimates the crystal-field splitting energy. Without spinorbit coupling, the order of the states at the top of VB is found to be normal for all the ZnX phases considered. Upon inclusion of the spinorbit coupling in calculations, ZnO in zinc-blende- and wurtzite-type phases become anomalous. It is shown that the Zn-3d electrons are responsible for the anomalous order. The effective masses of electrons and holes have been calculated and found that holes are much anisotropic and heavier than the electrons in agreement with experimental findings. The typical errors in calculated band gaps and related parameters originate from strong Coulomb correlations, which are found to be highly significant in ZnO. The LDA+U approach is found to correct the strong correlation of the Zn-3d electrons, and thus improves the agreement with the experimentally established location of the Zn-3d levels. Consequently, it increases significantly the parameters underestimated in the pure LDA calculations.Comment: 7 pages, 3 figures, 2 tables, ICAM-ICMAT conference, 200

    Bromidotricarbon­yl[2-(pyridin-2-yl-κN)-5-p-tolyl-1,3,4-oxadiazole-κN 3]rhenium(I) dichloro­methane monosolvate

    Get PDF
    In the title compound, [ReBr(C14H11N3O)(CO)3]·CH2Cl2, the coordination geometry of the ReI atom is a distorted ReC3N2Br octa­hedron with the carbonyl C atoms in a fac arrangement. Within the 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole ligand, the dihedral angles between the oxadiazole ring and the pyridine (py) and benzene (bz) rings are 1.7 (2) and 7.1 (2)°, respectively, and the dihedral angle between the py and bz rings is 5.5 (2)°. In the crystal, aromatic π–π stacking between the oxadiazole rings of adjacent mol­ecules [centroid–centroid separation = 3.465 (3) Å] is seen

    Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins.

    Get PDF
    The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature

    Copper(II)-mediated synthesis of indolequinones from bromoquinones and enamines

    Get PDF
    The reaction of enamines and bromoquinones in the presence of copper(II) acetate and potassium carbonate results in a regiospecific synthesis of indolequinones. The reaction is broad in scope and scalable and provides a route to the core structure that is present in several biologically interesting natural and synthetic compounds

    Study of an unusually high level of N-glycolylneuraminic acid (NGNA) sialylation on a monoclonal antibody expressed in Chinese hamster ovary cells

    Get PDF
    Sialic or neuraminic acids of recombinant therapeutic glycoproteins produced in mammalian cells, including monoclonal antibodies, have significant impact on the half-life, stability, and biological activity of these proteins (Hossler et al., 2009; Ghaderi et al., 2012). The predominant sialic acid N-acetylneuraminic acid (NANA or Neu5Ac) is added from precursor CMP-NANA to galactose residues of N-linked glycoproteins by sialytransferases. In most mammals CMP-NANA can also be modified to its hydroxylated derivative CMP-NGNA by CMP-N-acetylneuraminic acid hydroxylase (CMAH). NGNA can then be added from CMP-NGNA to galactose residues of the N-linked glycoproteins, also by sialytransferases. However, humans cannot make functional CMAH due to an inactivating exon deletion mutation in CMAH gene (Okerblom and Varki, 2017), and therefore cannot convert CMP-NANA to CMP-NGNA. Consequently, when injected into human patients, NGNA sialic acid containing mAbs or other recombinant glycoproteins may induce immune responses, which could negatively impact pharmacokinetics or efficacy. Therefore high levels of NGNA on therapeutic mAbs or other recombinant glycoproteins are an undesirable product quality attribute. The level of total sialic acids of recombinant glycoproteins produced in Chinese hamster ovary (CHO) cells is dictated largely by the selected cell lines, upstream process, and to a lesser degree, downstream process. NGNA sialylation is generally rare in CHO cells (Könitzer et al., 2015). Hence, therapeutic glycoproteins manufactured in these cells are considered safe for human use. However, during a first-in-human (FIH) upstream process development for a novel mAb, an initially selected desirable cell line (A) was found to produce the mAb with an unexpectedly high level of the NGNA sialic acid (\u3e30%). To the best of our knowledge such high level of NGNA sialylation on a mAb produced by CHO cells has not been reported. To mitigate potential risks associated with high NGNA in human patients, a new cell line (B) that produces the mAb with very low NGNA was selected as the manufacturing cell line for this project. In order to understand the molecular mechanism causing the high NGNA content in cell line A, we initiated comprehensive genetic gap analyses using next-generation sequencing technologies and determined the differences in genomic, transcriptomic, and miRnomic profiles of the two cell lines. The results indicate spontaneous upregulation of CMAH mRNA expression, at least 10 fold higher in cell line A compared to cell line B. In this talk we will summarize the results of our studies of this unusual sialylation behavior in CHO cells

    Genomic profiling and directed ex vivo drug analysis of an unclassifiable myelodysplastic/myeloproliferative neoplasm progressing into acute myeloid leukemia

    Get PDF
    Myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U) are rare genetically heterogeneous hematologic diseases associated with older age and a poor prognosis. If the disease progresses into acute myeloid leukemia (AML), it is often refractory to treatment. To gain insight into genetic alterations associated with disease progression, whole exome sequencing and single nucleotide polymorphism arrays were used to characterize the bone marrow and blood samples from a 39-year-old woman at MDS/MPN-U diagnosis and at AML progression, in which routine genetic diagnostics had not identified any genetic alterations. The data revealed the presence of a partial tandem duplication of the MLL gene as the only detectable copy number change and 11 non-silent somatic mutations, including DNMT3A R882H and NRAS G13D. All somatic lesions were present both at initial MDS/MPN-U diagnosis and at AML presentation at similar mutant allele frequencies. The patient has since had two extramedullary relapses and is at high risk of a future bone marrow relapse. A directed ex vivo drug sensitivity analysis showed that the patient's AML cells are sensitive to, for example, the MEK inhibitor trametinib and the proteasome inhibitor bortezomib, indicating that she may benefit from treatment with these drugs

    Recurrent DNMT3A R882 Mutations in Chinese Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome

    Get PDF
    Somatic mutations of DNMT3A gene have recently been reported in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We examined the entire coding sequences of DNMT3A gene by high-resolution melting analysis and sequencing in Chinese patients with myeloid malignancies. R882 mutations were found in 12/182 AML and in 4/51 MDS, but not in either 79 chronic myeloid leukemia (CML), or 57 myeloproliferative neoplasms (MPNs), or 4 chronic monomyelocytic leukemia. No other DNMT3A mutations were detected in all patients. R882 mutations were associated with old age and more frequently present in monoblastic leukemia (M4 and M5, 7/52) compared to other subtypes (5/130). Furthermore, 14/16 (86.6%) R882 mutations were observed in patients with normal karyotypes. The overall survival of mutated MDS patients was shorter than those without mutation (median 9 and 25 months, respectively). We conclude that DNMT3A R882 mutations are recurrent molecular aberrations in AML and MDS, and may be an adverse prognostic event in MDS

    Hydrogenation properties of lithium and sodium hydride – closo-borate, [B10H10]2− and [B12H12]2−, composites

    Get PDF
    © 2018 the Owner Societies. The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar.11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4or NaBH4and the remaining B species is 1:0.63 and 1:0.21, respectively. Solution and solid-state11B NMR spectra reveal new intermediates with a B:H ratio close to 1:1. Our results indicate that the M2B10H10(M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2-composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage
    • …
    corecore