283 research outputs found

    Thermalization, Viscosity and the Averaged Null Energy Condition

    Full text link
    We explore the implications of the averaged null energy condition for thermal states of relativistic quantum field theories. A key property of such thermal states is the thermalization length. This lengthscale generalizes the notion of a mean free path beyond weak coupling, and allows finite size regions to independently thermalize. Using the eigenstate thermalization hypothesis, we show that thermal fluctuations in finite size `fireballs' can produce states that violate the averaged null energy condition if the thermalization length is too short or if the shear viscosity is too large. These bounds become very weak with a large number N of degrees of freedom but can constrain real-world systems, such as the quark-gluon plasma.Comment: 28 pages, 3 figure

    Entanglement entropy of Wilson surfaces from bubbling geometries in M-theory

    Full text link
    We consider solutions of eleven-dimensional supergravity constructed in [1,2] that are half-BPS, locally asymptotic to AdS7×S4AdS_7\times S^4 and are the holographic dual of heavy Wilson surfaces in the six-dimensional (2,0)(2,0) theory. Using these bubbling solutions we calculate the holographic entanglement entropy for a spherical entangling surface in the presence of a planar Wilson surface. In addition, we calculate the holographic stress tensor and, by evaluating the on-shell supergravity action, the expectation value of the Wilson surface operator.Comment: 42 pages, 4 figures, v2: minor modification

    Holographic dual of the Eguchi-Kawai mechanism

    Get PDF
    archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2014-40, UUITP-03-14, QMUL-PH-14-08 slaccitation: %%CITATION = ARXIV:1404.0225;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2014-40, UUITP-03-14, QMUL-PH-14-08 slaccitation: %%CITATION = ARXIV:1404.0225;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2014-40, UUITP-03-14, QMUL-PH-14-08 slaccitation: %%CITATION = ARXIV:1404.0225;%%The work of K.Z. was supported by the ERC advanced grant No 341222, by the Marie Curie network GATIS of the European Union’s FP7 Programme under REA Grant Agreement No 317089, and by the Swedish Research Council (VR) grant 2013-4329. DY acknowledges NORDITA where this work was begun, during his time as a NORDITA fellow

    Entanglement of heavy quark impurities and generalized gravitational entropy

    Get PDF
    We calculate the contribution from non-conformal heavy quark sources to the entanglement entropy (EE) of a spherical region in N=4 SUSY Yang-Mills theory. We apply the generalized gravitational entropy method to non-conformal probe D-brane embeddings in AdS_5×S^5, dual to pointlike impurities exhibiting flows between quarks in large-rank tensor representations and the fundamental representation. For the D5-brane embedding which describes the screening of fundamental quarks in the UV to the antisymmetric tensor representation in the IR, the EE excess decreases non-monotonically towards its IR asymptotic value, tracking the qualitative behaviour of the one-point function of static fields sourced by the impurity. We also examine two classes of D3-brane embeddings, one which connects a symmetric representation source in the UV to fundamental quarks in the IR, and a second category which yields the symmetric representation source on the Coulomb branch. The EE excess for the former increases from the UV to the IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free energy on hyperbolic space with β = 2π increases monotonically towards the IR, supporting its interpretation as a relative entropy. We identify universal corrections, depending logarithmically on the VEV, for the symmetric representation on the Coulomb branch

    Corner contributions to holographic entanglement entropy

    Full text link
    The entanglement entropy of three-dimensional conformal field theories contains a universal contribution coming from corners in the entangling surface. We study these contributions in a holographic framework and, in particular, we consider the effects of higher curvature interactions in the bulk gravity theory. We find that for all of our holographic models, the corner contribution is only modified by an overall factor but the functional dependence on the opening angle is not modified by the new gravitational interactions. We also compare the dependence of the corner term on the new gravitational couplings to that for a number of other physical quantities, and we show that the ratio of the corner contribution over the central charge appearing in the two-point function of the stress tensor is a universal function for all of the holographic theories studied here. Comparing this holographic result to the analogous functions for free CFT's, we find fairly good agreement across the full range of the opening angle. However, there is a precise match in the limit where the entangling surface becomes smooth, i.e., the angle approaches π\pi, and we conjecture the corresponding ratio is a universal constant for all three-dimensional conformal field theories. In this paper, we expand on the holographic calculations in our previous letter arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match published version, typos fixe

    Entanglement Entropy for Singular Surfaces

    Full text link
    We study entanglement entropy for regions with a singular boundary in higher dimensions using the AdS/CFT correspondence and find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge 'c'. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, similar universal terms may appear depending on the dimension and curvature of the singular locus.Comment: 66 pages,4 figures. Some typos are removed and a reference is adde

    Generalized cusp in AdS_4 x CP^3 and more one-loop results from semiclassical strings

    Get PDF
    We evaluate the exact one-loop partition function for fundamental strings whose world-surface ends on a cusp at the boundary of AdS_4 and has a "jump" in CP^3. This allows us to extract the stringy prediction for the ABJM generalized cusp anomalous dimension Gamma_{cusp}^{ABJM} (phi,theta) up to NLO in sigma-model perturbation theory. With a similar analysis, we present the exact partition functions for folded closed string solutions moving in the AdS_3 parts of AdS_4 x CP^3 and AdS_3 x S^3 x S^3 x S^1 backgrounds. Results are obtained applying to the string solutions relevant for the AdS_4/CFT_3 and AdS_3/CFT_2 correspondence the tools previously developed for their AdS_5 x S^5 counterparts.Comment: 48 pages, 2 figures, version 3, corrected misprints in formulas 2.12, B.86, C.33, added comment on verification of the light-like limi
    • …
    corecore