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1 Introduction

The holographic gauge-string duality has given us insights into many strong coupling prob-

lems in quantum field theory. Exploring holography outside the regime of conformal sym-

metry, and in situations with reduced supersymmetry, is especially interesting in this re-

spect. Perhaps the simplest model that extends the realm of the AdS/CFT duality beyond

conformal theories is N = 2∗ supersymmetric Yang-Mills theory (SYM), where the adjoint

hypermultiplet of N = 4 SYM is given a mass, breaking both half of the supersymmetry

and the conformal invariance of the latter theory.

The Pilch-Warner (PW) solution of type IIB supergravity [1] has long been known as

the holographic dual of N = 2∗ SYM [2, 3]. The PW background consists of a domain

wall that separates an asymptotically AdS5 × S5 geometry near the boundary from the

near-horizon region far in the IR. The coordinate distance between the domain wall and

the boundary sets the mass scale of the dual field theory.

The N = 2∗ theory can be pictured as a flow that starts with N = 4 SYM in the UV.

At weak coupling, the IR end of the flow is pure N = 2 SYM, obtained upon integrating out

the hypermultiplet. An interesting question is what happens in the IR when the coupling

is not small. When the coupling is big this question can be addressed holographically. The

answer is somewhat unexpected — it turns out that the far IR regime of N = 2∗ SYM

exhibits features characteristic of a five-dimensional CFT, as first observed in [4]. Indeed,

the holographic entropy density of N = 2∗ SYM scales as s ∼ T 4 at low temperatures and

the speed of sound approaches c2
s = 1/4, the behaviour compatible with five-dimensional

scale invariance. To this list we can add the static potential that grows at large distances as

−1/L2 [3, 5], a Coulomb law in (4 + 1) dimensions. As explained in [4], these observations

have a geometric origin, as the far-IR geometry of the PW solution can be brought to the

asymptotically AdS6 form by a coordinate transformation.

What is the origin of the fifth dimension in the dual N = 2∗ field theory? Is it possible

to explain the occurrence of an extra dimension without holography? We are going to argue
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Figure 1. Each facet of a planar diagram is associated with a color index. The line that separates

facets with indices i and j is assigned the momentum p4 = ai − aj . The map {ai} → {p4l } is

one-to-one for a planar diagram.

that the dimensional crossover is a manifestation of the Eguchi-Kawai mechanism [6–9] at

large-N and large ’t Hooft coupling (a similar explanation was given in [4]). Another

holographic realization of the Eguchi-Kawai reduction is the thermal AdS dual of N = 4

super-Yang-Mills theory at finite temperature [10–13].

The Eguchi-Kawai reduction arises in large-N gauge theories with flat directions in the

potential. For the mechanism to work, translation symmetry along flat directions should

not be broken by quantum fluctuations. Most commonly, the Eguchi-Kawai mechanism re-

lies on fields with commutator couplings. Suppose that fields ΦI , in the adjoint of the gauge

group U(N), enter the Lagrangian only through couplings of the form tr[ΦI , φ]2. The poten-

tial then has flat directions along the diagonal components of ΦI , which can thus condense.

In the original Eguchi-Kawai construction, the fields ΦI are the gauge potentials Aµ of the

reduced theory in zero space-time dimensions [6]. The field that condenses in N = 2∗ SYM

is the scalar from the vector multiplet, and we will suppress the index I in what follows:

〈Φ〉 = diag (a1, . . . , aN ) . (1.1)

In the presence of the condensate, the field components with color indices i, j acquire

masses m2
ij = m2 + (ai − aj)2, where m is the bare mass in the Lagrangian and (ai − aj)2

is the Higgs mass that comes from the commutator term. In the particular case of N = 2∗

SYM, m = 0 for the vector multiplet and m = M for the matter hypermultiplet, where M

is the mass scale in the Lagrangian.

The propagators in the diagonal background (1.1) are of the form:

φij(p)φ
k
l (−p) =

δilδ
k
j

p2 + (ai − aj)2 +m2
. (1.2)

Each index loop of a Feynman diagram in ’t Hooft’s double-line notation carries a particular

color and hence a particular ai. Summation over color indices then amounts to averaging

over ai’s with the weight

ρ(a) =
1

N

N∑
i=1

δ (a− ai) . (1.3)

– 2 –



J
H
E
P
0
6
(
2
0
1
4
)
0
3
0

In any planar diagram, the number of independent ai’s is the same as the number of loop

momenta, up to an overall shift ai → ai + const . The eigenvalue density of the symmetry-

breaking VEV becomes a smooth function in the large-N limit, and the difference ai − aj
can be interpreted as the fifth component p4 of the momentum flowing through the ij

line (figure 1). Of course, color averaging resembles momentum integration only if the

distribution ρ(x) is flat within a sufficiently wide interval [−Λ,Λ], where Λ then plays the

rôle of a UV cutoff. It can be shown that color averaging is equivalent to momentum

integration to any order of planar perturbation theory [9], provided that the distribution

ρ(a) is sufficiently flat.

A well-known obstacle to Eguchi-Kawai reduction is that ρ(a), in principle a dynamical

quantity, is not really flat [7]. For the reduction to work the eigenvalues ai must be

distributed more or less uniformly over a fairly large interval, larger than any physical

mass scale in the problem. This is not the case in the simplest Eguchi-Kawai model, where

the eigenvalues tend to clump around zero at weak coupling [7]. The problem can be

circumvented in models with adjoint matter and/or double-trace couplings [14, 15].

In the case at hand, the dimensional crossover for sure does not happen at weak

coupling, when N = 2∗ SYM flows to the pure gauge N = 2 theory in the IR. The strong-

coupling nature of the gravitational description is consequently crucial for opening up of

the fifth dimension, observed in the holographic dual of N = 2∗ SYM. The difference must

be accounted for by the structure of the eigenvalue density (1.1).

The eigenvalue density in N = 2∗ SYM is actually known. At strong coupling, it can

be computed holographically by the probe analysis of the PW background [16]:

ρ(a) =
2

πµ2

√
µ2 − a2, µ =

√
λM

2π
, (1.4)

where λ = g2
YMN is the ’t Hooft coupling. The same eigenvalue density can be calcu-

lated directly from field theory, without any reference to holography, by localizing the

path integral on S4 [17] and taking the large-N limit of the localization partition func-

tion [18]. The result (1.4) arises in the strong-coupling limit, λ→∞. The exact eigenvalue

distribution [19–21] flattens with growing λ, as already evident from the strong-coupling

expression (1.4). The eigenvalue cutoff, µ =
√
λM/2π, becomes parametrically larger than

the mass scale M if λ� 1, and we may then expect the Eguchi-Kawai mechanism to work.

In section 2 we provide further evidence for Eguchi-Kawai mechanism in strongly-

coupled N = 2∗ SYM by revisiting the computation of the static potential, as measured by

the infinite rectangular Maldacena-Wilson loop. For small quark-anti quark separations L,

one finds the expected 1/L Coulombic behaviour encountered in the N = 4 SYM / AdS5×
S5 duality [22, 23]. For L much greater than the (inverse of the) N = 2∗ mass scale M , the

potential morphs to that expected from a 5-dimensional gauge theory, i.e. it goes as 1/L2 [3].

This behaviour has been understood as due to the continuous distribution of branes found at

the enhançon radius [24]. Here we relate this behaviour with the Eguchi-Kawai mechanism.

We will provide insight into the mechanism responsible for the 1/L2 potential by

considering simple one-loop diagrams in the gauge theory at weak coupling, albeit inserting

the strong-coupling form of the VEV eigenvalue distribution (1.4). We find that a familiar

– 3 –
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Figure 2. The rectangular contour used to compute the static potential. At the leading order

in perturbation theory the potential is given by the exchange of ϕ and Aµ fields between opposite

sides of the Wilson loop. Each line carries color indices i and j and associated eigenvalues of the

scalar VEV ai and aj .

phenomenon is at play: the condensed eigenvalues play the role of an extra-dimensional

momentum, which when integrated over produces the 1/L2 form of the potential.

The simplest relevant deformation of the standard AdS/CFT setup, N = 2∗ hologra-

phy, was studied from many points of view. In particular, D-brane probes have provided a

wealth of information about the PW geometry [16, 25–28]. The holographic dual of N = 2∗

SYM at finite temperature was constructed in [29], opening the avenue for studying ther-

modynamics of this theory at strong coupling [30–38]. It is this analysis that first pointed

to the 5d nature of the strongly-coupled N = 2∗ SYM [4]. In addition, classical string

probes [39], supersymmetry properties [40], and entanglement entropy [41] of the PW so-

lution have been investigated. Owing to the ability to apply localization to the theory on

S4 [17], the strong-coupling behaviour of the free energy, Wilson loops [18, 42], and the

theory’s phases [19–21] have been explored using matrix model techniques. Comparisons

using supergravity computations on the Pilch-Warner background (and its generalization

for the case of S4 boundary [43, 44]) have been successfully made for Wilson loops [18] and

recently for the free energy [43].

To further study the IR CFT of the strongly coupled N = 2∗ SYM, in section 3

we consider the boundary-to-boundary propagator for massive scalar fields on the Pilch-

Warner background, for separations �M−1.

2 Static potential

The static potential is defined through the expectation value of the rectangular Wilson

loop, which in an N = 2 supersymmetric theory couples also to scalars. The N = 2∗

theory has two real scalars in the vector multiplet. Here we label them Φ and Φ′. The

Maldacena-Wilson loop is taken to couple to just one of those, the same one that takes on

the vacuum expectation value (1.1):

W (C) = 〈 1

N
TrP exp

∮
C
dτ
(
iẋµ(τ)Aµ + |ẋ(τ)|Φ

)
〉. (2.1)
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The potential is computed according to the identification

V (L) = − lim
T→∞

1

T
lnW (CT×L) (2.2)

for a rectangular contour with sides L and T as shown in figure 2.

The static potential V (L) at strong coupling is given by the action of a string worldsheet

with a boundary consisting of two infinite anti-parallel lines separated by a distance L. At

small L, the potential has the expected 1/L behaviour at short distances while at large

distances it approaches a constant with the deviation scaling as 1/L2. We shortly review

the supergravity calculation of the static potential, which can be found in appendix A of [5],

and then demonstrate that very similar behaviour arises on the field-theory side if we use

the following heuristic prescription. The potential depends on the eignvalue distribution of

the symmetry-breaking condensate. If the strong-coupling distribution (1.4) is inserted in

the tree-level exchange diagram, then at large distances the potential has a 1/L2 fall-off,

as a consequence of the Eguchi-Kawai mechanism.

2.1 Strong coupling

The PW background is a five-dimensional domain wall whose metric is also warped with

respect to the coordinates of the internal manifold, a deformed S5. The five-dimensional

metric therefore depends on where on the internal manifold the string sits. This, in turn,

is determined by the scalar couplings of the Wilson loop. The deformation of S5 preserves

the S1 × S3 foliation, with S1 roughly speaking dual to the vector multiplet and S3 dual

to the hypermultiplet scalars. The Wilson loop (2.1) only couples to the vector multiplet

scalar Φ, so the dual string worldsheet sits at the locus where S3 shrinks to zero size,

θ = π/2 in the notation of [1], and since there is no coupling to Φ′, at ϕ = 0, where ϕ is

the coordinate on S1.

The five-dimensional PW metric, restricted to θ = π/2, ϕ = 0 and transformed to the

string frame, is given by

ds2 =
A

c2 − 1
M2dx2

µ +
1

A(c2 − 1)2
dc2, (2.3)

where1

A = c+
c2 − 1

2
log

c− 1

c+ 1
. (2.4)

The boundary is at c = 1, with c related to the conventional radial coordinate z of AdS5 as

c = 1 +
z2M2

2
+ . . . (2.5)

For the minimal surface parameterized by t and c = c(x), the Lagrangian density of the

Nambu-Goto action is

L =
M

c2 − 1

√
A2M2 +

(c′)2

c2 − 1
, (2.6)

1The ρ6 used in [1] is here denoted by A.
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where ′ denotes d/dx. Going through the usual steps we obtain the potential in parametric

form:

ML

2
=

∫ cm

1

dc

A
√
c2 − 1

1√
(c2m−1)2A2

(c2−1)2A2
m
− 1

,

V (L) =
M
√
λ

π

∫ cm

1+ ε2M2

2

dc

(c2 − 1)3/2

1√
1− A2

m
A2

(c2−1)2

(c2m−1)2

−
√
λ

πε

=
M
√
λ

π


∫ cm

1

dc

(c2 − 1)3/2

 1√
1− A2

m
A2

(c2−1)2

(c2m−1)2

− 1

− cm√
c2
m − 1

 .

(2.7)

where cm is the value of the coordinate c at the midpoint where the string reaches its max-

imum depth in the holographic direction, and Am = A(cm). The overall factor of
√
λ/2π is

the dimensionless string tension. We employ the AdS-based prescription for regularization

of the boundary divergence, which guarantees the match to the N = 4 result [22, 23] at

short distances:

V (L) = − M

Γ2
(

1
4

) √ λπ

cm − 1
+ . . . = −4π2

√
λ

Γ4
(

1
4

) 1

L
+ . . . (LM � 1) . (2.8)

In the opposite limit of LM � 1 the first integral in (2.7) is dominated by large c.

This is because the string worldsheet quickly drops into the bulk, whereupon it turns over

and stays at essentially constant c = cm ∝ L before turning back to the boundary in a

symmetric fashion. Then [5]

V (L) = −M
√
λ

π

(
1 +

√
πΓ
(

2
3

)
2Γ
(

1
6

)
c2
m

+ . . .

)
= −M

√
λ

π
−

9Γ3
(

2
3

)√
π

2Γ3
(

1
6

) √
λ

ML2
+ . . . (LM � 1) ,

(2.9)

and so, after the perimeter law, the potential goes as 1/L2 at large-L. The constant term in

the IR asymptotics of the potential reflects the finite self-energy of well-separated quarks.

The self-energy can be computed exactly [18, 19] by a first-principles field-theory calculation

(from localization [17]). The strong-coupling interpolation of this result perfectly matches

with the first term in (2.9) [18]. The potential is partially screened at large distances,

and behaves as if the theory were five-dimensional which is another manifestation of the

phenomenon observed in [4], that the holographic dual of N = 2∗ SYM flows to a 5d CFT

in the IR.

The full strong-coupling potential is shown in figure 3. The transition from the

Coulomb law at short distances to the partially screened behaviour at large distances

happens, as expected, at L ∼ 1/M .

2.2 Weak coupling

The leading order at weak coupling is the one-particle exchange diagrams in figure 2, where

the static potential is given by the spatial Fourier transform of the propagator at p0 = 0

– 6 –



J
H
E
P
0
6
(
2
0
1
4
)
0
3
0

0.5 1.0 1.5 2.0 2.5 3.0
ML

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

ΠV HLL

Λ M

Figure 3. The static potential at strong coupling. Asymptotic behaviour at small and large

distances is shown in dashed lines.

(subtracting the constant self-energy):

V (L) = − λ

N2

N∑
i,j=1

∫
d3p

(2π)3

ei~p·
~L

~p2 + a2
ij

. (2.10)

The potential depends on the eigenvalue distribution (1.3). Let us now us plug-in the

strong-coupling eigenvalue density (1.4) in the simple tree-level expression for the potential.

This is clearly not a consistent procedure, but it does illustrate how the Eguchi-Kawai

mechanism works in this context. We have:

V (L) = −λ
∫

d3p

(2π)3
ei~p·

~L

∫
da

∫
db

ρ(a)ρ(b)

~p2 + (a− b)2
. (2.11)

If we are interested in V (L) for large values of L � M−1, then the integration over ~p is

dominated by p ∼ L−1. But then the integration over the eigenvalues is dominated by the

region a − b ∼ p ∼ L−1. Given the distribution ρ(a) at strong coupling given in (1.4), we

see that a and b themselves are O(
√
λM). Since we are taking M � L−1 we see that a and

b are individually much larger then their separation a − b. We may thus define a “fourth

momentum” p4 ≡ a− b and write

V (L�M−1) ' −2πλ

∫ µ

−µ
da ρ2(a)×

∫
d3p

(2π)3

∫
dp4

2π

ei~p·
~L

~p2 + p2
4

= − 32λ

3πµ
× 1

4π2L2
= − 16

3π2

√
λ

ML2
.

(2.12)

The parametric dependence on both L and λ is in agreement with the strong-coupling

result (2.9). The numerical prefactors in front of
√
λ/ML2 are quite different, which is
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not unexpected as the weak-coupling calculation was not really self-consistent. We believe

however, that the qualitative reason for the change from the 1/L Coulomb behaviour to

1/L2 is a manifestation of the same mechanism in both cases. At higher orders of pertur-

bation theory, which have to be taken into account if λ is big, the difference ai − aj across

any line of a planar diagram effectively plays the rôle of the fifth momentum, while the

wide spread of the eigenvalues at strong coupling supplies the flat measure for momentum

integration. It would be interesting to make this qualitative picture more precise.

3 Two-point function

To further study the effective IR CFT of strongly-coupled N = 2∗ theory, we would like

to compute holographic two-point functions in the Pilch-Warner background. This is a

formidable task, given the complexity of the supergravity solution. But since we are in-

terested in qualitative features of the effective CFT and thus focus on the IR behaviour,

we will study a simpler problem by truncating the geometry to its 5d AdS-like slice (2.3),

keeping in mind the Kaluza-Klein-type decomposition of the full 10d field. We will study a

scalar field in this geometry minimally coupled to the metric either in the string frame, as

written in (2.3), or in the Einstein frame where the metric is multiplied the dilaton factor:

e−
φ
2 =
√
c. (3.1)

Normally, the large-distance behaviour of holographic two-point functions is governed by

the geodesic approximation. This is true in AdS5 and in many of its non-conformal cousins,

but here the geodesic approximation does not work, for the following reason: the (renor-

malized) length of the geodesic that connects two points x and y on the boundary grows

with |x− y|, but not sufficiently fast. The geodesic distance saturates at large coordinate

separation and goes to a constant as |x − y| → ∞. In this sense all the points on the

boundary are close to each other; the geodesic distance never becomes large and the WKB

approximation never becomes accurate for the boundary-to-boundary propagator. We thus

need to study the Klein-Gordon equation directly.

We start with the five-dimensional metric

ds2 = f(c) dxµdxµ + h(c) dc2. (3.2)

The functions f(c) and h(c) are defined in (2.3), (2.4):

f(c) =
M2Acν

c2 − 1
, h(c) =

cν

A (c2 − 1)2 , (3.3)

and

ν =

{
0 in string frame
1
2 in Einstein frame.

(3.4)

We leave f and h unspecified for the time being.

– 8 –
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The Green’s function G∆(c, xµ; c′, x′) for a scalar field dual to an operator with UV

dimension ∆ satisfies[
− 1

f2
√
h
∂c

f2

√
h
∂c −

1

f
∂µ∂

µ + ∆ (∆− 4)

]
G∆(c, x; c′, x′) =

δ4(x− x′)δ(c− c′)
f2
√
h

. (3.5)

The two-point function is given by the boundary-to-boundary limit of the bulk propagator:

〈O(x)O(x′)〉 =
21−∆π2M2∆

∆− 1
lim
ε→0

ε−∆G∆

(
1 + ε, x; 1 + ε, x′

)
. (3.6)

The factors of 2 and M reflect the relationship (2.5) between the coordinate c of the PW

metric and the canonical radial coordinate of AdS5.

The Klein-Gordon equation can be brought to the Schrödinger form by multiplying

the Green’s function with fh−1/4. The resulting Schrödinger equations reads

− U ′′α +


(
fh−

1
4

)′′
fh−

1
4

+ ∆ (∆− 4)h− α2 h

f

Uα = 0, (3.7)

where ′ denotes d/dc. Since the effective potential starts with an infinite wall2 at c → 1

and goes to zero sufficiently fast at infinity, there is one eigenfunction for each α > 0. The

eigenfunctions can be normalized as∫ ∞
1

dc
h(c)

f(c)
U∗α′(c)Uα(c) = δ

(
α′2 − α2

)
, (3.8)

and as a consequence satisfy the completeness condition∫ ∞
0

dα2 Uα(c)U∗α(c′) =
f(c)

h(c)
δ
(
c− c′

)
. (3.9)

The bulk-to-bulk propagator is expressed in terms of the eigenfunctions Uα(c) as

G∆(c, x; c′, x′) =
h

1
4 (c)h

1
4 (c′)

f(c)f(c′)

∫
d4p

(2π)4 e ip(x−x
′)

∫ ∞
0

dα2 Uα(c)U∗α(c′)

p2 + α2
. (3.10)

This can be verified rather directly by applying the Klein-Gordon operator (3.5) to G∆ so

defined and using the properties (3.7)–(3.9) above.

The spectral decomposition of the bulk propagator yields the Källén-Lehmann repre-

sentation for the two-point function:

〈O(x)O(x′)〉 =

∫ ∞
0

dα2 ρ∆(α)

∫
d4p

(2π)4 e ip(x−x
′) 1

p2 + α2
, (3.11)

with the spectral weight

ρ∆(α) =
22−∆π2M2∆−4

∆− 1
lim
ε→0

ε1−∆ |Uα(1 + ε)|2 . (3.12)

2Or an infinite dip, depending on ∆.
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This is the standard holographic machinery. We need to specify it for the case of the

PW background. The PW metric behaves near the boundary as

f(c) ' M2

2 (c− 1)
, h(c) ' 1

4 (c− 1)2 (c→ 1) . (3.13)

Upon the change of variables (2.5) the PW metric in this approximation reduces to the

standard (dimensionless) metric of the Poincaré patch of AdS5. In the deep-IR where

c� 1, we have instead

f(c) ' 2M2

3c3−ν , h(c) ' 3

2c3−ν (c→∞) . (3.14)

In either case, (3.7) reduces to the Bessel equation:

− U ′′α +

[
∆ (∆− 4) + 3

4 (c− 1)2 − α2

2M2(c− 1)

]
Uα = 0 (c→ 1) , (3.15)

or

− U ′′α +

[
3 (3− ν) (13− 3ν)

16c2
− 9α2

4M2

]
Uα = 0 (c→∞) . (3.16)

We therefore find:

Uα(c) ' C1

√
c− 1 J∆−2

( α
M

√
2(c− 1)

)
(c→ 1) (3.17)

and

Uα(c) ' C2

√
c J 11−3ν

4

(
3αc

2M

)
(c→∞) . (3.18)

The constants C1 and C2 are determined by matching the asymptotic solutions in the

intermediate region c ∼ 1 and by the overall normalization condition. To find the spectral

weight of the two-point function, according to (3.12), we need to calculate one of these

constants, the C1.

The spectral weight at large α, which determines the short-distance asymptotics of the

two-point functions, can be inferred from (3.17) alone. Indeed, at large α, the eigenfunction

enters the oscillating regime long before reaching the matching region of c ∼ 1. It can be

seen that the phase of oscillations changes much slower with c in the region c� 1, because

of the square root in the argument of the Bessel functions. This range of c, not very

close to the boundary, but still such that c is not extremely large, thus gives the leading

contribution to the normalization integral, which thus determines the constant C1 to be

C1 ' 1 (α→∞) . (3.19)

This yields:

ρ∆(α) ' π2

Γ (∆) Γ (∆− 1)

(α
2

)2∆−4
(α→∞) , (3.20)

the spectral weight of canonically normalized scalar of dimension ∆:

〈O(x)O(0)〉 ' 1

|x|2∆
(M |x| � 1) . (3.21)
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Figure 4. Two-point function of the operator tr Φ3Ψ̄Ψ in the presence of the scalar condensate.

In the opposite case of small α, the wavefunction is small near the boundary, and the

large-distance asymptotics (3.18) saturates the normalization integral. This determines the

constant C2:

C2 '
1√
2

(α→ 0) . (3.22)

Matching (3.18) with (3.17) at c ∼ 1 we find:

C1 ∼ α
19−3ν

4
−∆ (α→ 0) (3.23)

and

ρ∆(α) ∼ C2
1α

2∆−4 ∼ α
11−3ν

2 (α→ 0) . (3.24)

The two-point function, consequently, behaves at large distances as

〈O(x)O(0)〉 ' const

|x|
19−3ν

2

(M |x| � 1) . (3.25)

A peculiar feature of this result is that the IR scaling dimension does not depend on the

UV dimension, or in other words on the mass of the scalar field in the bulk. It depends how-

ever on the specific coupling of the dual field to the supergravity background. For instance,

the IR dimension is ∆IR = 19/4 for the scalar with the minimal coupling in the string frame

and ∆IR = 35/8 in the Einstein frame. Fields with the same coupling to the supergravity

background, but with different masses lead to distinct scaling dimensions in the UV but the

same dimension in the IR. Roughly speaking, all Kaluza-Klein modes of the same 10d field

will have degenerate IR scaling dimensions. How can that happen? There is no symmetry

that could explain such enormous degeneracy. Here we provide a qualitative explanation

based on the weak-coupling intuition. Consider an operator that consists of L scalar fields

and two fermions. This operator has the UV dimension L + 3 (at weak coupling). This

follows from connecting all the fields in the two operators pairwise by propagators. But in

the presence of the vacuum expectation value (1.1), the scalar lines can end on the conden-

sate (figure 4) leaving behind only two fermion lines. The IR scaling dimension of any such

operator will thus be the same and independent of L. Though this is a tree-level argument,

it is plausible that the degeneracy remains to all orders in perturbation theory, and the IR

dimension of any operator of this type reduces to that of the basic fermion bilinear.

4 Conclusions

At large distances the strongly coupled N = 2∗ SYM behaves as a five-dimensional

CFT [4]. We have argued that this unexpected result is a non-perturbative manifesta-

tion of Eguchi-Kawai mechanism. The key point is the flattening of the eigenvalue density
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of the symmetry-breaking scalar VEV. The color average then mimics integration of the

fifth component of momentum. Considering the quark-anti-quark potential as an example,

we were able to reproduce the right dependence on the ’t Hooft coupling and the distance

between quarks, V (λ) ∼
√
λ/L2, by just plugging the strong-coupling eigenvalue density

in the tree-level potential. The constant of proportionality comes out wrong, which is not

surprising as our calculation is not really self-consistent. The eigenvalue density is exactly

known from the supergravity analysis [16] and supersymmetric localization [18], but keep-

ing only tree level diagrams is certainly not a good approximation at strong coupling. It

would be interesting to see if the tree-level truncation can be improved, for example by

resumming infinite classes of diagrams.

Another unusual feature of the holographic dual of N = 2∗ theory is a huge degeneracy

of IR scaling dimensions. A qualitative explanation for this fact is that scalar lines in

Feynman diagrams can be absorbed into the Higgs condensate, making operators that

differ by their scalar content degenerate in the IR. The argument is again perturbative,

and its validity at strong coupling requires an independent confirmation. It is desirable

in this respect to promote our rather sketchy calculation of scaling dimensions on the

holographic side to a full-fledged analysis of linear perturbations in the PW background.
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