1,404 research outputs found

    Investigation of the influence of rail hardness on the wear of rail and wheel materials under dry conditions (ICRI wear mapping project)

    Get PDF
    Some railway managers and practitioners fear that introducing premium rail materials will have a detrimental effect on the wheels of trains that use the line. A review of relevant investigations across all scales in the laboratory, and in the field has been carried out. This showed that, as rail hardness increases, its wear, and overall system wear reduces. Wheel wear does increase with increasing rail hardness, but only for wheels running on rails that are softer than them. Similar trends were observed in all studies, so it seems that the fears were unfounded. While the wear trends appear well characterised some issues have been identified. One relates to the varying work hardening capability of wheel and rail materials. Often only bulk hardness is quoted, but work hardening can increase material surface hardness by up to 2.5 times and make materials that were initially softer, harder than the opposing material. Another related issue is test length. It is essential that enough cycles are applied such that the materials reach steady state wear, i.e., the point at which work hardening has reached its limit. In previous work it is not always clear that steady state wear has been reached. Some gaps have been identified in the current knowledge base, the largest of which is the failure to determine which mechanisms lead to the wear trends seen. Analysis of recent work on different clad layers on rail discs and premium rail materials allowed some of these gaps to be addressed. Results indicated that opposing wheel material hardened to the same level independent of rail hardness. Wheel wear is therefore stress driven under the conditions used, and dictated by the wheel material properties only. At higher slip levels relationships become less clear, but here temperature and therefore hot hardness is most influential and is as yet uncharacterised

    Wear and damage transitions of wheel and rail materials under various contact conditions

    Get PDF
    This study discusses a Tγ/A method of plotting wear data from a twin-disc machine for identifying the wear and damage transitions of wheel and rail materials. As found in previous work, three wear regimes (mild wear, severe wear and catastrophic wear) of U71Mn rail material were identified in dry rolling-sliding contact tests. It was determined that the damage mechanism transforms in the different wear regimes. Here earlier studies were extended to establish wear behavior for the presence of a number of third body materials (oil, water, friction enhancers) and a rail cladding process designed to make wheels and rails more durable. This has provided much needed data for Multi-Body Dynamics (MBD) simulations, and will allow better predictions of profile evolution of wheel and rail over a wider range of conditions

    Volatile metabolites associated with one aflatoxigenic and one nontoxigenic Aspergillus flavus strain grown on two different substrates

    Get PDF
    Aflatoxigenic and non-toxigenic Aspergillus flavus strains were grown on corn and on peanut substrates. Microbial volatile organic compounds (MVOCS) were collected by trapping headspace volatiles using thermal desorption tubes (TDT) packed with Tenax® TA and Carbotrap™ B. Samples were collected at various fungal growth stages. Trapped compounds were thermally desorbed from the adsorbent tubes, separated by gas chromatography, and identified by mass spectrometry. The fungal stage did not have many differences in the MVOCs but the concentrations of some volatiles changed over time depending on the substrate. Volatiles that were associated with both the aflatoxigenic A. flavus strain and the nontoxigenic strain on both substrates included: ethanol, 1-propanol, butanal, 2-methyl-1-propanol, 3-methylfuran, ethyl acetate, 1-butanol, 3-methylbutanal, 3-methyl-1-butanol, propanoic acid-2-methyl-ethyl-ester, 2-methyl-1-butanol, 1-pentanol, 2-pentanol, 3-methyl-3-buten-1-ol, benzaldehyde, 3-octanone, 2-ethyl-1-hexanol and octane. Volatiles that were associated only with the aflatoxigenic A. flavus strain included: dimethyl disulfide and nonanal. Volatiles that were associated only with the nontoxigenic A. fl avus strain included: hexanal, 1-hexanol, 1-octene-3-ol, 1-octen-3-one and 2-pentyl furan

    Antibody validation of immunohistochemistry for biomarker discovery: Recommendations of a consortium of academic and pharmaceutical based histopathology researchers

    Get PDF
    As biomarker discovery takes centre-stage, the role of immunohistochemistry within that process is increasing. At the same time, the number of antibodies being produced for ‘‘research use’’ continues to rise and it is important that antibodies to be used as biomarkers are validated for specificity and sensitivity before use. This guideline seeks to provide a stepwise approach for the validation of an antibody for immunohistochemical assays, reflecting the views of a consortium of academic and pharmaceutical based histopathology researchers. We propose that antibodies are placed into a tier system, level 1–3, based on evidence of their usage in immunohistochemistry, and that the degree of validation required is proportionate to their place on that tier

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Evaluation of the n-alkane technique for estimating herbage dry matter intake of dairy cows offered herbage harvested at two different stages of growth in summer and autumn

    Get PDF
    peer-reviewedThe n-alkane technique for estimating herbage dry matter intake (DMI) of dairy cows was investigated in this experiment. Eight Holstein-Friesian dairy cows were offered perennial ryegrass ad libitum that had been harvested at two different herbage masses and during two different seasons, in order to assess the effect of herbage mass and season on the accuracy of the n-alkane technique. Two pre-harvested herbage mass treatments (low, target 1500 kg DM/ha versus high, target 4000 kg DM/ha, measured above 4 cm), were investigated in a crossover factorial arrangement within each of two seasons (summer versus autumn), in Ireland. Each season consisted of two periods, each 12 days in length. Cows were housed in individual metabolism stalls to allow for accurate determination of measured DMI. Herbage DMI was estimated, with the n-alkane technique, by dosing cows twice daily with a C32 n-alkane. Pre-harvest herbage mass and season did not affect the n-alkane estimated DMI, although lack of season and herbage mass effects may have been masked by variation that occurred between swards within the same herbage mass and season. However, there were a number of differences between summer and autumn in the fecal recovery rates of a number of n-alkanes suggesting that the effect of season requires further investigation prior to the application of recovery rates from literature values when investigating diet selection and botanical composition. Overall, the n-alkane technique provided good estimates of DMI; the discrepancy had a standard deviation due to sward of 1.2 and 1.0 kg DM/cow per day, and hence potential bias of up to twice this, and a measurement error standard deviation of 1.3 and 1.0 kg DM/cow per day, for the C33/C32 and C31/C32 n-alkane pair methods respectively. Two n-alkane pairs were tested, and C33/C32 n-alkane provided the most precise estimates of DMI, compared with the C31/C32 n-alkane pair. This research provides some strong evidence for future use of the n-alkane technique including that the accuracy of the technique has not been influenced by contemporary changes to herbage management, is not affected by seasonal changes, and overall is an accurate and precise technique for estimating DMI.This research was funded by Teagasc Core Funding (Ireland) and the Irish Dairy Levy Research fund (Ireland). The Department of Economic Development, Jobs, Transport and Resources (Australia), Dairy Australia (Australia) and The University of Melbourne (Australia) supported the travel costs in order to conduct this research

    WMAP constraints on inflationary models with global defects

    Get PDF
    We use the cosmic microwave background angular power spectra to place upper limits on the degree to which global defects may have aided cosmic structure formation. We explore this under the inflationary paradigm, but with the addition of textures resulting from the breaking of a global O(4) symmetry during the early stages of the Universe. As a measure of their contribution, we use the fraction of the temperature power spectrum that is attributed to the defects at a multipole of 10. However, we find a parameter degeneracy enabling a fit to the first-year WMAP data to be made even with a significant defect fraction. This degeneracy involves the baryon fraction and the Hubble constant, plus the normalization and tilt of the primordial power spectrum. Hence, constraints on these cosmological parameters are weakened. Combining the WMAP data with a constraint on the physical baryon fraction from big bang nucleosynthesis calculations and high-redshift deuterium abundance, limits the extent of the degeneracy and gives an upper bound on the defect fraction of 0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio
    corecore