We use the cosmic microwave background angular power spectra to place upper
limits on the degree to which global defects may have aided cosmic structure
formation. We explore this under the inflationary paradigm, but with the
addition of textures resulting from the breaking of a global O(4) symmetry
during the early stages of the Universe. As a measure of their contribution, we
use the fraction of the temperature power spectrum that is attributed to the
defects at a multipole of 10. However, we find a parameter degeneracy enabling
a fit to the first-year WMAP data to be made even with a significant defect
fraction. This degeneracy involves the baryon fraction and the Hubble constant,
plus the normalization and tilt of the primordial power spectrum. Hence,
constraints on these cosmological parameters are weakened. Combining the WMAP
data with a constraint on the physical baryon fraction from big bang
nucleosynthesis calculations and high-redshift deuterium abundance, limits the
extent of the degeneracy and gives an upper bound on the defect fraction of
0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio