956 research outputs found

    Exact quantum states of a general time-dependent quadratic system from classical action

    Full text link
    A generalization of driven harmonic oscillator with time-dependent mass and frequency, by adding total time-derivative terms to the Lagrangian, is considered. The generalization which gives a general quadratic Hamiltonian system does not change the classical equation of motion. Based on the observation by Feynman and Hibbs, the propagators (kernels) of the systems are calculated from the classical action, in terms of solutions of the classical equation of motion: two homogeneous and one particular solutions. The kernels are then used to find wave functions which satisfy the Schr\"{o}dinger equation. One of the wave functions is shown to be that of a Gaussian pure state. In every case considered, we prove that the kernel does not depend on the way of choosing the classical solutions, while the wave functions depend on the choice. The generalization which gives a rather complicated quadratic Hamiltonian is simply interpreted as acting an unitary transformation to the driven harmonic oscillator system in the Hamiltonian formulation.Comment: Submitted to Phys. Rev.

    The generalized Robinson-Foulds metric

    Get PDF
    The Robinson-Foulds (RF) metric is arguably the most widely used measure of phylogenetic tree similarity, despite its well-known shortcomings: For example, moving a single taxon in a tree can result in a tree that has maximum distance to the original one; but the two trees are identical if we remove the single taxon. To this end, we propose a natural extension of the RF metric that does not simply count identical clades but instead, also takes similar clades into consideration. In contrast to previous approaches, our model requires the matching between clades to respect the structure of the two trees, a property that the classical RF metric exhibits, too. We show that computing this generalized RF metric is, unfortunately, NP-hard. We then present a simple Integer Linear Program for its computation, and evaluate it by an all-against-all comparison of 100 trees from a benchmark data set. We find that matchings that respect the tree structure differ significantly from those that do not, underlining the importance of this natural condition.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers

    No full text
    Disordered time perception has been reported in schizophrenia. We investigated time perception dysfunction and its neuropsychological correlates in patients with schizophrenia. Participants comprised 38 patients and 38 age- and sex-matched healthy volunteers who were compared in an auditory temporal bisection paradigm using two interval ranges (a 400/800 ins condition and a 1000/2000 ms condition). In the temporal bisection, subjects were required to categorise a probe duration as short or long, based upon the similarity with two reference durations. All subjects also completed a battery of neuropsychological tests measuring sustained attention, short- and long-term memory and executive function. In the 400/800 ins condition, patients judged durations significantly shorter than did control subjects. Patients also exhibited decreased temporal sensitivity in both conditions. We found in both groups a negative association between temporal sensitivity and sustained attention for the 400/800 ms condition, and between temporal sensitivity and long-term memory for the 1000/200 ms condition. In patients, short-term memory performance was negatively associated with duration judgement in both conditions, while executive dysfunction was correlated to a general performance deficit in the 400/800 ms condition. These findings suggest the possibility that time perception abnormalities in schizophrenia are part of neuropsychological dysfunction and are likely to adversely impact upon activity of daily living. (c) 2008 Elsevier Ireland Ltd. All rights reserved

    Association between prenatal maternal infection and disordered eating behaviours in adolescence: A UK population-based prospective birth cohort study

    Get PDF
    Background Prenatal infections have been proposed as a putative risk factor for a number of psychiatric outcomes across a continuum of severity. Evidence on eating disorders is scarce. We investigated whether exposure to prenatal maternal infections is associated with an increased risk of disordered eating and weight and shape concerns in adolescence in a large UK birth cohort.Methods We used data from the Avon Longitudinal Study of Parents and Children. The primary exposure was maternal experience of infections at any time in pregnancy. Study outcomes were presence of any, monthly or weekly disordered eating at 14 and 16 years of age, and weight and shape concerns at 14 years. We defined the causal effect of the exposure on these outcomes using a counterfactual framework adjusting our analyses for a number of hypothesised confounders, and imputing missing confounder data using multiple imputation.Results In total, 4884 children had complete exposure and outcome data at age 14 years, and 4124 at 16 years. Exposed children had a greater risk of reporting weekly disordered eating at both age 14 [risk difference (RD) 0.9%, 95% confidence interval (CI)-0.01 to 1.9, p = 0.08] and 16 (RD 2.3%, 95% CI 0.6-3.9, p < 0.01), though evidence of an association was weak at age 14 years. Exposed children also had greater weight and shape concerns at age 14 years (mean difference 0.15, 95% CI 0.05-0.26, p < 0.01).Conclusions Exposure to prenatal maternal infection is associated with greater risk of disordered eating in adolescence. This association could be explained by in utero processes leading to impaired neurodevelopment or altered immunological profiles. Residual confounding cannot be excluded

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate

    Extended chiral algebras and the emergence of SU(2) quantum numbers in the Coulomb gas

    Get PDF
    We study a set of chiral symmetries contained in degenerate operators beyond the `minimal' sector of the c(p,q) models. For the operators h_{(2j+2)q-1,1}=h_{1,(2j+2)p-1} at conformal weight [ (j+1)p-1 ][ (j+1)q -1 ], for every 2j \in N, we find 2j+1 chiral operators which have quantum numbers of a spin j representation of SU(2). We give a free-field construction of these operators which makes this structure explicit and allows their OPEs to be calculated directly without any use of screening charges. The first non-trivial chiral field in this series, at j=1/2, is a fermionic or para-fermionic doublet. The three chiral bosonic fields, at j=1, generate a closed W-algebra and we calculate the vacuum character of these triplet models.Comment: 23 pages Late

    Predicting Risk in Patients Hospitalized for Acute Decompensated Heart Failure and Preserved Ejection Fraction: The Atherosclerosis Risk in Communities Study Heart Failure Community Surveillance

    Get PDF
    Background Risk-prediction models specifically for hospitalized heart failure with preserved ejection fraction are lacking. Methods and Results We analyzed data from the ARIC (Atherosclerosis Risk in Communities) Study Heart Failure Community Surveillance to create and validate a risk score predicting mortality in patients ≥55 years of age admitted with acute decompensated heart failure with preserved ejection fraction (ejection fraction ≥50%). A modified version of the risk-prediction model for acute heart failure developed from patients in the EFFECT (Enhanced Feedback for Effective Cardiac Treatment) study was used as a composite predictor of 28-day and 1-year mortalities and evaluated together with other potential predictors in a stepwise logistic regression. The derivation sample consisted of 1852 hospitalizations from 2005 to 2011 (mean age, 77 years; 65% women; 74% white). Risk scores were created from the identified predictors and validated in hospitalizations from 2012 to 2013 (n=821). Mortality in the derivation and validation sample was 11% and 8% at 28 days and 34% and 31% at 1 year. The modified EFFECT score, including age, systolic blood pressure, blood urea nitrogen, sodium, cerebrovascular disease, chronic obstructive pulmonary disease, and hemoglobin, was a powerful predictor of mortality. Another important predictor for both 28-day and 1-year mortalities was hypoxia. The risk scores were well calibrated and had good discrimination in the derivation sample (area under the curve: 0.76 for 28-day and 0.72 for 1-year mortalities) and validation sample (area under the curve: 0.73 and 0.71, respectively). Conclusions Mortality after acute decompensation in patients with heart failure with preserved ejection fraction is high, with one third of patients dying within a year. A prediction tool may allow for greater discrimination of the highest risk patients. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00005131
    corecore