Abstract

A generalization of driven harmonic oscillator with time-dependent mass and frequency, by adding total time-derivative terms to the Lagrangian, is considered. The generalization which gives a general quadratic Hamiltonian system does not change the classical equation of motion. Based on the observation by Feynman and Hibbs, the propagators (kernels) of the systems are calculated from the classical action, in terms of solutions of the classical equation of motion: two homogeneous and one particular solutions. The kernels are then used to find wave functions which satisfy the Schr\"{o}dinger equation. One of the wave functions is shown to be that of a Gaussian pure state. In every case considered, we prove that the kernel does not depend on the way of choosing the classical solutions, while the wave functions depend on the choice. The generalization which gives a rather complicated quadratic Hamiltonian is simply interpreted as acting an unitary transformation to the driven harmonic oscillator system in the Hamiltonian formulation.Comment: Submitted to Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions