908 research outputs found

    Beetroot Juice Does Not Enhance Altitude Running Performance in Well-Trained Athletes

    Get PDF
    We hypothesized that acute dietary nitrate (NO3-) provided as concentrated beetroot juice supplement would improve endurance running performance of well-trained runners in normobaric hypoxia. Ten male runners (mean (SD): sea level V�O2max 66 (7) mL.kg<sup>-1</sup>.min<sup>-1</sup>, 10 km personal best 36 (2) min) completed incremental exercise to exhaustion at 4000 m and a 10 km treadmill time trial at 2500 m simulated altitude on separate days, after supplementation with ~7 mmol NO3- and a placebo, 2.5 h before exercise. Oxygen cost, arterial oxygen saturation, heart rate and ratings of perceived exertion (RPE) were determined during the incremental exercise test. Differences between treatments were determined using means [95% confidence intervals], paired sample t-tests and a probability of individual response analysis. NO3- supplementation increased plasma [nitrite] (NO3-, 473 (226) nM vs. placebo, 61 (37) nM, P < 0.001) but did not alter time to exhaustion during the incremental test (NO3-, 402 (80) s vs. placebo 393 (62) s, P = 0.5) or time to complete the 10 km time trial (NO3-, 2862 (233) s vs. placebo, 2874 (265) s, P = 0.6). Further, no practically meaningful beneficial effect on time trial performance was observed as the 11 [-60 to 38] s improvement was less than the a priori determined minimum important difference (51 s), and only three runners experienced a ´likely, probable´ performance improvement. NO3- also did not alter oxygen cost, arterial oxygen saturation, heart rate or RPE. Acute dietary NO3- supplementation did not consistently enhance running performance of well-trained athletes in normobaric hypoxia

    Options for informal environmental management : the agricultural industry highlighted

    Get PDF
    The original article can be found at: http://www3.interscience.wiley.com Copyright John Wiley &amp; Sons, Ltd and ERP Environment.Discussions are frequently found in the environmental press regarding the possible advantages to an organisation should they implement a formal environmental management system such as BS 7750, ISO 14001 and the EC Eco-Management and Audit Scheme (EMAS). It is also widely recognised that these formal systems, although theoretically applicable to all, are often seen by many organisations as being too unwieldy, too prescriptive, frequently too expensive and often too public. However, there are many alternative options available to organisations who do not wish to commit themselves to a formal accredited system. This paper discusses the various options currently in use for informal environmental management in agriculture with particular reference to a computerised system being developed at the University of Hertfordshire. Application examples are taken from the agricultural industry.Peer reviewe

    A study on wear evaluation of railway wheels based on multibody dynamics and wear computation

    No full text
    The wear evolution of railway wheels is a very important issue in railway engineering. In the past, the reprofiling intervals of railway vehicle steel wheels have been scheduled according to designers' experience. Today, more reliable and accurate tools in predicting wheel wear evolution and wheelset lifetime can be used in order to achieve economical and safety benefits. In this work, a computational tool that is able to predict the evolution of the wheel profiles for a given railway system, as a function of the distance run, is presented. The strategy adopted consists of using a commercial multibody software to study the railway dynamic problem and a purpose-built code for managing its pre- and post-processing data in order to compute the wear. The tool is applied here to realistic operation scenarios in order to assess the effect of some service conditions on the wheel wear progression

    On the perils of ignoring evolution in networks

    Get PDF
    Here, we reply to the stimulating comments from Sagoff [1] and Rossberg [2] on Segar et al. [3]

    The role of evolution in shaping ecological networks

    Get PDF
    The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes

    Pasture allowance, duration, and stage of lactation—Effects on early and total lactation animal performance

    Get PDF
    peer-reviewedPasture availability in early spring can be limited due to climatic effects on grass production, increasing the likelihood of feed deficits in early lactation of spring-calving pasture-based systems. We hypothesized that restricting pasture allowance (PA) when animals are at peak milk production will have more negative implications on milk production compared with restricting animals before this period. A total of 105 cows were assigned to 1 of 7 grazing treatments from March 14 to October 31, 2016 (33 wk). The control treatment was offered a PA to achieve a postgrazing sward height > 3.5 cm and mean pasture allowance of 15.5 kg of dry matter per cow. The remaining treatments were offered a PA representing 60% of that offered to the control for a duration of 2 or 6 wk from March 14 (mid-March; MMx2 and MMx6), March 28 (end of March; EMx2 and EMx6), or April 11 (mid-April; MAx2 and MAx6). Within grazing treatment, animals were also assigned to 1 of 2 calving dates (early and late) based on days in milk (DIM) on March 14. Early calved (EC) cows were ≥36 DIM, while late calved (LC) were ≤35 DIM. Restricting PA for 2 and 6 wk reduced daily milk yield (−1.6 and −2.2 kg/cow, respectively), cumulative milk protein yield (−4.0 and −6.3 kg/cow, respectively), and cumulative milk solids yield (−5.8 and −9.5 kg/cow, respectively) in the first 10 wk of the experiment. Daily milk yield was similar across the treatments at the end of the 33-wk period (16.8 kg/cow, average of all treatments), as was daily milk solids yield (1.40 kg/cow). Cows in the EC group produced less milk over the first 10 wk of the experiment (20.0 kg/cow per day) compared with the LC animals (22.1 kg/cow per day). However, body weight was greater (+15 kg/cow) in the EC animals compared with the LC, while body condition score was similar (2.85). This outcome indicates that animals that are restricted later in early lactation (circa onset of peak milk production) partition a greater proportion of available energy to maintenance, resulting in greater losses in milk production. These data indicate that despite the immediate reduction in milk production, restricting intake of grazing cows to 80% of that required to achieve spring grazing targets for postgrazing sward height for up to 6 wk may be used as a method of managing short-term pasture deficits on farm with minimal effects on total lactation performance

    An examination of two concentrate allocation strategies which are based on the early lactation milk yield of autumn calving Holstein Friesian cows

    Get PDF
    peer-reviewedThe objective of this experiment was to compare the effects of two concentrate feeding strategies offered with a grass silage and maize silage diet on the dry matter (DM) intake, milk production (MP) and estimated energy balance of autumn calved dairy cows. Over a 2-year period, 180 autumn calving Holstein Friesian cows were examined. Within year, cows were blocked into three MP sub-groups (n=9) (high (HMP), medium (MMP) and low (LMP)) based on the average MP data from weeks 3 and 4 of lactation. Within a block cows were randomly assigned to one of two treatments (n=54), flat rate (FR) concentrate feeding or feed to yield (FY) based on MP sub-group. Cows on the FR treatment were offered a fixed rate of concentrate (5.5 kg DM/cow per day) irrespective of MP sub-group. In the FY treatment HMP, MMP and LMP cows were allocated 7.3, 5.5 and 3.7 kg DM of concentrate, respectively. The mean concentrate offered to the FR and FY treatments was the same. On the FR treatment there was no significant difference in total dry matter intake (TDMI, 17.3 kg) between MP sub-groups. In the FY treatment, however, the TDMI of HMP-FY was 2.2 kg greater than MMP-FY, and 4.5 kg greater than LMP-FY (15.2 kg DM). The milk yield of LMP-FR was 3.5 kg less than the mean of the HMP-FR and MMP-FR treatments (24.5 kg). The milk yield of the HMP-FY treatment was 3.6 and 7.9 kg greater than the MMP-FY and LMP-FY treatments, respectively. The difference in MP between the HMP sub-groups was 2.6 kg, which translates to a response of 1.4 kg of milk per additional 1 kg of concentrate offered. There was no significant difference in MP between the two LMP sub-groups; however, MP increased 0.8 kg per additional 1 kg of concentrate offered between cows on the LMP-FR and LMP-FY treatments. The estimated energy balance was positive for cows on the LMP-FR treatment, but negative for cows on the other treatments. The experiment highlights the variation within a herd in MP response to concentrate, as cows with a lower MP potential are less responsive to additional energy input than cows with a greater MP potential. Cows with a greater MP capacity did not substitute additional concentrate for the basal forage, which indicates an additional demand for energy based on ability of individual cows to produce milk

    Unified Dark Matter models with fast transition

    Get PDF
    We investigate the general properties of Unified Dark Matter (UDM) fluid models where the pressure and the energy density are linked by a barotropic equation of state (EoS) p=p(ρ)p = p(\rho) and the perturbations are adiabatic. The EoS is assumed to admit a future attractor that acts as an effective cosmological constant, while asymptotically in the past the pressure is negligible. UDM models of the dark sector are appealing because they evade the so-called "coincidence problem" and "predict" what can be interpreted as wDE1w_{\rm DE} \approx -1, but in general suffer the effects of a non-negligible Jeans scale that wreak havoc in the evolution of perturbations, causing a large Integrated Sachs-Wolfe effect and/or changing structure formation at small scales. Typically, observational constraints are violated, unless the parameters of the UDM model are tuned to make it indistinguishable from Λ\LambdaCDM. Here we show how this problem can be avoided, studying in detail the functional form of the Jeans scale in adiabatic UDM perturbations and introducing a class of models with a fast transition between an early Einstein-de Sitter CDM-like era and a later Λ\LambdaCDM-like phase. If the transition is fast enough, these models may exhibit satisfactory structure formation and CMB fluctuations. To consider a concrete case, we introduce a toy UDM model and show that it can predict CMB and matter power spectra that are in agreement with observations for a wide range of parameter values.Comment: 30 pages, 15 figures, JHEP3 style, typos corrected; it matches the published versio

    Using Social Software for Teamwork and Collaborative Project Management in Higher Education

    Get PDF
    This paper discusses the potential role of social software in supporting teamwork and collaborative project management in higher education. Based on the fact that social software has been widely spread among young students nowadays, using it for collaborative learning is believed to increase students' involvement and create learning incentives. Two social software platforms, Graaasp and Google Wave are examined in terms of sustaining collaborative learning activities. Relevant existing features and possible extensions that enhance the learning experience are addressed. Benefits and challenges resulting from the bottom-up learning paradigm are also presented

    Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss.

    Get PDF
    Hydrogenosomes are H2-producing mitochondrial homologues found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition we generated genomic and transcriptomic datasets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes
    corecore