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Valleggio 11, 22100 Como, Italy
b INFN, sez. di Milano, Via Celoria 16, 20133 Milano, Italy
c Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama

Building, Portsmouth PO1 3FX United Kingdom
d Dipartimento di Fisica Galileo Galilei Università di Padova
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Abstract: We investigate the general properties of Unified Dark Matter (UDM) fluid

models where the pressure and the energy density are linked by a barotropic equation of

state (EoS) p = p(ρ) and the perturbations are adiabatic. The EoS is assumed to admit a

future attractor that acts as an effective cosmological constant, while asymptotically in the

past the pressure is negligible. UDM models of the dark sector are appealing because they

evade the so-called “coincidence problem” and “predict” what can be interpreted as wDE ≈
−1, but in general suffer the effects of a non-negligible Jeans scale that wreak havoc in the

evolution of perturbations, causing a large Integrated Sachs-Wolfe effect and/or changing

structure formation at small scales. Typically, observational constraints are violated, unless

the parameters of the UDM model are tuned to make it indistinguishable from ΛCDM.

Here we show how this problem can be avoided, studying in detail the functional form of

the Jeans scale in adiabatic UDM perturbations and introducing a class of models with a

fast transition between an early Einstein–de Sitter CDM-like era and a later ΛCDM-like

phase. If the transition is fast enough, these models may exhibit satisfactory structure

formation and CMB fluctuations. To consider a concrete case, we introduce a toy UDM

model and show that it can predict CMB and matter power spectra that are in agreement

with observations for a wide range of parameter values.
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sound, Physics beyond Standard Model.
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1. Introduction

In the last three decades the flat ΛCDM model [1, 2] has emerged as the standard “con-

cordance” [3, 4] model of cosmology. It assumes General Relativity (GR) as the correct

theory of gravity, with two unknown components dominating the dynamics of the late

Universe: i ) a cold collisionless Cold Dark Matter (CDM) describing some weakly inter-

acting particles, responsible for structure formation, ii ) a cosmological constant Λ [5, 6]

making up the balance to make the Universe spatially flat and driving the observed cosmic

acceleration [7, 8, 9, 10]. The main alternative to the cosmological constant is a more

general dynamic component called Dark Energy (DE) [11, 12, 13]. Many independent ob-

servations support both the existence of a CDM component and that of a separate DE

[10, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Early proposals [1, 2] of the ΛCDM model were adding Λ to CDM in an attempt to

conciliate in the simplest possible way the emerging inflationary paradigm, which requires

a spatially flat Universe and an almost scale-invariant spectrum of perturbations, with the

observed low density of matter. It should however be recognised that, while some form of

CDM is independently expected to exist within any modification of the Standard Model

of high energy physics, the really compelling reason to postulate the existence of DE has

been the cosmic acceleration measured in the last decade [7, 8, 9, 10, 17, 18, 19, 20, 21]. It

is mainly for this reason that it is worth investigating the hypothesis that CDM and DE

are the two faces of a single Unified Dark Matter (UDM) component, thereby also avoiding

the so-called “coincidence problem” [23].

Other attempts to explain the observed acceleration also exist, most notably by as-

suming a gravity theory other than GR, or an interaction between DM and DE (see e.g.
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[11, 24, 25, 26, 27] and [28, 29, 30, 31, 32, 33, 34]). In this paper however we focus on

UDM models, where this single matter component provides an explanation for structure

formation and cosmic acceleration.

In general, in the ΛCDM model or in most models with DM and DE, the CDM

component is free to form structures at all scales, with DE only affecting the general

overall expansion [11, 12, 13]. Instead, a general feature of UDM models is the possible

appearance of an effective sound speed, which may become significantly different from

zero during the Universe evolution, then corresponding in general to the appearance of a

Jeans length (i.e. a sound horizon) below which the dark fluid does not cluster (e.g. see

[35, 36, 37]). Moreover, the presence of a non-negligible speed of sound can modify the

evolution of the gravitational potential, producing a strong Integrated Sachs Wolfe (ISW)

effect [36]. Therefore, in UDM models it is crucial to study the evolution of the effective

speed of sound and that of the Jeans length.

Several adiabatic fluid models and models based on non canonical kinetic Lagrangians

have been investigated in the literature. For example, the generalised Chaplygin gas [38,

39, 40] (see also [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]), the Scherrer [52] and generalised

Scherrer solutions [53], the single dark perfect fluid with “affine” 2-parameter barotropic

equation of state (see [54, 37] and the corresponding scalar field models [55]) and the

homogeneous scalar field deduced from the galactic halo space-time [56, 57]. In general, in

order for UDM models to have a background evolution that fits observations and a very

small speed of sound, a severe fine-tuning of their parameters is necessary (see for example

[37, 47, 48, 49, 50, 52, 58, 59]). Finally, one could also easily reinterpret UDM models

based on a scalar field Lagrangian in terms of generally non-adiabatic fluids [60, 61] (see

also [53, 62]). For these models the effective speed of sound, which remains defined in the

context of linear perturbation theory, is not the same as the adiabatic speed of sound (see

[35], [63] and [64]). In [62] a reconstruction technique is devised for the Lagrangian, which

allows to find models where the effective speed of sound is small enough, such that the

k-essence scalar field can cluster (see also [65]).

In the present paper we investigate the possibility of constructing adiabatic UDM

models where the Jeans length is very small, even when the speed of sound is not negligible.

In particular, our study is focused on models that admit an effective cosmological constant

and that are characterised by a short period during which the effective speed of sound varies

significantly from zero. This allows a fast transition between an early matter dominated

era, which is indistinguishable from an Einstein–de Sitter model, and a more recent epoch

whose dynamics, background and perturbative, are very close to that of a standard ΛCDM

model.

To consider a concrete example, we introduce a 3-parameter class of toy UDM adiabatic

models with fast transition. One of the parameters is the effective cosmological constant

ρΛ or, equivalently, the corresponding density parameter ΩΛ; the other two are ρs and

ρt, respectively regulating how fast the transition is and the redshift of the transition.

Studying the Jeans scale in these models we find an approximate analytical relation that

sets a constraint on these two parameters, a sufficient condition that ρs and ρt have to

satisfy in order for the models to be minimally viable. This relation can be used to fix ρs
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for any given ρt: in this case, with respect to a flat ΛCDM, in practice our models have one

single extra parameter. With the help of this relation we establish our main result: if the

fast transition takes place early enough, at a redshift z & 2 when the effective cosmological

constant is still subdominant, then the predicted background evolution, Cosmic Microwave

Background (CMB) anisotropy and linear matter power spectrum are in agreement with

observations for a broad range of parameter values. In practice, in our toy models the

predicted CMB and matter power spectra do not display significant differences from those

computed in the ΛCDM model, because the Jeans length remains small at all times, except

for negligibly short periods, even if during the fast transition the speed of sound can be

large. In other words, this kind of adiabatic UDM models evade the “no-go theorem” of

Sandvik et al [50] who, studying the generalised Chaplygin gas UDM models, showed that

this broad class must have an almost constant negative pressure at all times in order to

satisfy observational constraints, making these models in practice indistinguishable from

the ΛCDM model (see also [37]).

The paper is organised as follows: in section 2 we introduce the basic equations describ-

ing the background and the perturbative evolution. In section 3 we use the pressure-density

plane to analyse the properties that a general barotropic UDM model has to fulfil in order

to be viable. In section 4 we introduce our toy UDM model with fast transition and study

its background evolution, comparing it to a ΛCDM. In section 5 we analyse the properties

of perturbations in this model, focusing on the the evolution of the effective speed of sound

and that of the Jeans length during the transition. Then, using the CAMB code [66], in

section 6 we compute the CMB and the matter power spectra. Finally, section 7 is devoted

to our conclusions.

2. Background and perturbative equations for a UDM model

We assume a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology.

The metric then is ds2 = −dt2 + a2(t)δijdx
idxj, where t is the cosmic time, a(t) is the

scale factor and δij is the Kronecker delta. The total stress-energy tensor is that of a per-

fect fluid: Tµν = (ρ+ p)uµuν + pgµν , where ρ and p are, respectively, the energy density

and the pressure of the fluid, while uµ is its four-velocity. Starting from these assumptions,

and choosing units such that 8πG = c = 1, Einstein equations imply the Friedmann and

Raychaudhuri equations:

H2 =

(

ȧ

a

)2

=
ρ

3
, (2.1)

ä

a
= −1

6
(ρ+ 3p) , (2.2)

where H = ȧ/a is the Hubble expansion scalar and the dot denotes derivative with respect

to the cosmic time. Assuming that the energy density of the radiation is negligible at the

times of interest, and disregarding also the small baryonic component, ρ and p represent

the energy density and the pressure of the UDM component.

The energy conservation equation is:

ρ̇ = −3H (ρ+ p) = −3Hρ (1 + w) , (2.3)
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where w := p/ρ is the equation of state (hereafter EoS) “parameter”. In this paper we

investigate a class of UDM models based on a barotropic EoS p = p(ρ), i.e. those models

for which the pressure is function of the density only (see e.g. [67] and [68] for a discussion

of general properties of barotropic fluids as dark components). In this case, if the EoS

allows the value w = −1, the barotropic fluid admits an effective cosmological constant

energy density, i.e. a fixed point of Eq. (2.3) [67, 69, 54], which we will denote as ρΛ. Under

very reasonable conditions (see the discussion below) this effective cosmological constant

is unavoidable for barotropic fluids1 [67, 69].

In order to properly describe the dynamics of the fluid we must consider the back-

ground EoS as well as the speed of sound which regulates the growth of fluid perturbations

on different cosmological scales. In the following we shall confine our study to the simplest

hypothesis that the EoS remains of the barotropic form p = p(ρ) when we allow for pertur-

bations: in this case our models will be adiabatic, and the effective and adiabatic speeds

of sound will coincide, see e.g. [70, 71, 72, 35]. Other choices for the perturbed spacetime

are possible, see [37] for a recent practical example.

Let us consider small perturbations of the FLRW metric in the longitudinal gauge,

using conformal time η: ds2 = −a2(η)
[

(1 + 2Φ) dη2 − (1− 2Φ) δijdx
idxj

]

, where Φ is the

gravitational potential.

Defining

u :=
2Φ√
ρ+ p

(2.4)

and linearising the 0-0 and 0-i components of Einstein equations, for a plane-wave per-

turbation u ∝ exp (ik · x) one obtains the following second order differential equation

[73, 58, 36]:

u′′ + k2c2su− θ′′

θ
u = 0 , (2.5)

where the prime is the derivative with respect to the conformal time η, c2s is the effective

speed of sound and

θ :=

√

ρ

3(ρ+ p)
(1 + z) , (2.6)

with z the redshift, 1 + z = a−1. In general, the adiabatic speed of sound is c2ad := p′/ρ′;

for an adiabatic fluid c2s = c2ad.

Starting from Eq. (2.5), let us define the squared Jeans wave number [36]:

k2J :=

∣

∣

∣

∣

θ′′

c2sθ

∣

∣

∣

∣

. (2.7)

Its reciprocal defines the squared Jeans length: λ2
J := a2/k2J.

1Since this effective cosmological constant trivially satisfies an energy conservation equation (2.3) on its

own, a fluid admitting an effective ρΛ is always equivalent to two separate components, namely ρΛ itself

and an “aether” fluid, see [67] and [68]. Obviously, this is more general; for instance, a scalar field with a

potential admitting a non vanishing minimum V0 = V (φ0) 6= 0 at - say - φ0, is equivalent to a cosmological

constant ρΛ = V0 and a scalar field in a potential Ṽ = V − V0.
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There are two regimes of evolution. If k2 ≫ k2J and the speed of sound is slowly

varying, then the solution of Eq. (2.5) is

u ≃ C√
cs

exp

(

±ik

∫

csdη

)

, (2.8)

where C is an appropriate integration constant2. On these scales, smaller than the Jeans

length, the gravitational potential oscillates and decays in time, with observable effects on

both the CMB and the matter power spectra [36].

For large scale perturbations, when k2 ≪ k2J, Eq. (2.5) can be rewritten as u′′/u ≃
θ′′/θ, with general solution

u ≃ κ1θ + κ2θ

∫

dη

θ2
. (2.9)

In this large scale limit the evolution of the gravitational potential Φ depends only on the

background evolution, encoded in θ, i.e. it is the same for all k modes. The first term κ1θ

is the usual decaying mode, which we are going to neglect in the following, while κ2 is

related to the power spectrum, see e.g. [64].

3. Analysis of barotropic UDM models on the pressure-density plane

A common way to study the properties of the EoS of DE is to consider the (dw/d ln a)−w

phase space (see e.g. [74, 75, 76, 77]). Here we follow another approach, studying our

models in the pressure-density plane, see Fig. 1. There are several motivations for this

choice. First of all, in the barotropic case we are considering the pressure is a function

of the density only, so it is natural to give a graphical description on the p − ρ plane.

Second, this plane gives an idea of the cosmological evolution of the dark fluid. Indeed, in

an expanding Universe (H > 0) Eq. (2.3) implies ρ̇ < 0 for a fluid satisfying the null energy

condition [78] w > −1 during its evolution, hence there exists a one-to-one correspondence

between time and energy density. Finally, in the adiabatic case the effective speed of

sound we have introduced in Eq. (2.5) can be written as c2s = dp/dρ, therefore it has an

immediate geometric significance on the p − ρ plane as the slope of the curve describing

the EoS p = p(ρ).

For a fluid, it is quite natural to assume c2s ≥ 0, which then implies that the function

p(ρ) is monotonic, and as such crosses the p = −ρ line at some point ρΛ.
3 From the point of

view of the dynamics this is a crucial fact, because it implies the existence of an attracting

fixed point (ρ̇ = 0) for the conservation equation (2.3) of our UDM fluid, i.e. ρΛ plays the

2This solution is exact if the speed of sound satisfies the equation 2c′′s cs − 3 (c′s)
2
= 0, which implies

cs =
4

(c1η + c2)
2
,

where c1 and c2 are generic constants. A particular case is when c1 = 0, for which the speed of sound is

constant.
3Obviously, we are assuming that during the evolution the EoS allows p to become negative, actually

violating the strong energy condition [78], i.e. p < −ρ/3 at least for some ρ > 0, otherwise the fluid would

never be able to produce an accelerated expansion.
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K1

0

Figure 1: The UDM p − ρ plane with the most important areas, (see the text for more detail).

The dashed line represents the p = −ρ line; the dash-dotted line represents the p = −ρ/3 line, the

boundary between the decelerated expansion phase of the Universe and the accelerated one; the

dotted line p = −ρ/10 represents a fictitious boundary, above which the CDM-like behaviour of

the UDM fluid dominates. The pressure and the energy density are normalised to ρΛ. The ΛCDM

model is represented here by the solid horizontal line p/ρΛ = −1, while the line p = 0 represents an

EdS model, i.e. pure CDM.

role of an unavoidable effective cosmological constant. The Universe necessarily evolves

toward an asymptotic de-Sitter phase, a sort of cosmic no-hair theorem (see [79, 80] and

refs. therein and [67, 69, 54]).

We now summarise, starting from Eqs. (2.1-2.5) and taking also into account the

current observational constraints and theoretical understanding, a list of the fundamental

properties that an adiabatic UDM model has to satisfy in order to be viable. We then

translate these properties on the p− ρ plane, see Fig. 1.

1. We assume the UDM to satisfy the weak energy condition: ρ > 0; therefore, we are

only interested in the positive half plane. In addition, we assume that the null energy

condition is satisfied: ρ + p ≥ 0, i.e. our UDM is a standard (non-phantom) fluid.

Finally, we assume that our UDM models admit a ρΛ, so that an asymptotic w = −1

is built in.

2. We demand a dust-like behaviour back in the past, at high energies, i.e. a negligible

pressure p ≪ ρ for ρ ≫ ρΛ.
4 In particular, for an adiabatic fluid we require that at

4Note that we could have p ≃ −ρΛ and yet, if ρ ≫ ρΛ, the Universe would still be in a matter-like era.
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recombination |wrec| . 10−6, see [81, 37, 54, 55].

3. Let us consider a Taylor expansion of the UDM EoS p(ρ) about the present energy

density ρ0:

p ≃ p0 + α(ρ− ρ0) , (3.1)

i.e. an “affine” EoS model [37, 54, 55, 67] where α is the adiabatic speed of sound

at the present time. Clearly, these models would be represented by straight lines in

Fig. 1, with α the slope. The ΛCDM model, interpreted as UDM, corresponds to the

affine model (3.1) with α = 0 (see [67] and [54, 37]) and thus it is represented in Fig.

1 by the horizontal line p = −ρΛ. From the matter power spectrum constraints on

affine models [37], it turns out that α . 10−7. Note therefore that, from the UDM

perspective, today we necessarily have w ≃ −0.7.

Few comments are in order. From the points above, one could conclude that any

adiabatic UDM model, in order to be viable, necessarily has to degenerate into the ΛCDM

model, as shown in [50] for the generalised Chaplygin gas and in [37] for the affine adiabatic

model5 (see [82, 83, 84] for an analysis of other models). In other words, one would conclude

that any UDM model should satisfy the condition c2s ≪ 1 at all times, so that k2J ≫ k2 for

all scales of cosmological interest, in turn giving an evolution for the gravitational potential

Φ as in Eq. (2.9):

Φk ≃ Ak

(

1− H

a

∫

a2dη

)

, (3.2)

where Ak = Φk (0)Tm (k), Φk (0) is the primordial gravitational potential at large scales,

set during inflation, and Tm (k) is the matter transfer function, see e.g. [85].

On the other hand, let us write down the explicit form of the Jeans wave number:

k2J =
3

2

ρ

(1 + z)2
(1 + w)

c2s

∣

∣

∣

∣

1

2
(c2s − w)− ρ

dc2s
dρ

+
3(c2s − w)2 − 2(c2s − w)

6(1 + w)
+

1

3

∣

∣

∣

∣

. (3.3)

Clearly, we can obtain a large k2J not only when c2s → 0, but also when c2s changes rapidly,

i.e. when the above expression is dominated by the ρ dc2s/dρ term. When this term is

dominating in Eq. (3.3), we may say that the EoS is characterised by a fast transition.

Thus, viable adiabatic UDM models can be constructed which do not require c2s ≪ 1 at

all times if the speed of sound goes through a rapid change, a fast transition period during

which k2J can remain large, in the sense that k2 ≪ k2J for all scales of cosmological interest

to which the linear perturbation theory of Eq. (2.5) applies. From point 3 above, at late

times we must have p ≃ −ρΛ; on the other hand, at recombination we have |wrec| . 10−6

and the speed of sound is negligible, implying p ≈ constant. Therefore, the transition

will mark the passage from a very small (possibly vanishing) almost constant p to the

5From the point of view of the analysis of models in the p− ρ plane of Fig. 1, the constraints found by

Sandvik et al [50] on the generalised Chaplygin gas UDM models and by [37] on the affine UDM models

simply amount to say that the curves representing these models are indistinguishable from the horizontal

ΛCDM line.
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asymptotic value p ≃ −ρΛ or, in other words, from a pure CDM-like early phase to a post-

transition ΛCDM-like late epoch. In addition, we may expect the transition to occur at

relatively high redshifts, high enough to make the UDM model quite similar to the ΛCDM

model at late times. Indeed, again from point 3 above, we infer that the fast transition

should take place sufficiently far in the past, in particular during the dark matter epoch,

when ρ ≫ ρΛ. Otherwise, we expect that it would be problematic to reproduce the current

observations related to the UDM parameter w, for instance it would be hard to have a

good fit of supernovae and ISW effect data.

In the rest of the paper, in order to quantitatively investigate observational constraints

on UDM models with fast transition, we introduce and discuss a toy model. In particular,

we will explore which values of the parameters of this toy model fit the observed CMB and

matter power spectra.

Finally, let us make a last remark on building phenomenological UDM (or DE) fluid

models intended to represent the homogeneous FLRW background and its linear pertur-

bations. A fast transition in a fluid model could be characterised by a large value of c2s ,

even larger than 1. As far as the FLRW background evolution is concerned, this fact does

not raise any issue: the background is homogeneous, and c2s = ṗ/ρ̇ does not actually rep-

resent a speed of sound, as there is nothing that could propagate in this case. For linear

perturbations, at scales such that k ≪ kJ the solution of the Eq. (2.5) for the gravitational

potential is Eq. (3.2). Therefore, for such scales there is no superluminal propagation.

This is because Eq. (2.5) is the Fourier component of a wave equation with potential θ′′/θ,

and this potential does not allow propagation for k ≪ kJ. In building a phenomenological

fluid model, we can therefore choose values for the parameters of the model in order to

always satisfy the condition k ≪ kJ for all k of cosmological interests to which linear theory

applies, hence such a fluid model will be a good causal model for all scales that intends to

represent. In other words, we can always build the fluid model in such a way that all scales

smaller than the Jeans length λ ≪ λJ correspond to those in the non-linear regime, i.e.

scales beyond the range of applicability of the model. So, for these scales, no conclusions

can be derived from the linear theory on the behaviour of perturbations of a UDM model

with c2s & 1. To investigate these scales, one needs to be beyond the perturbative regime

investigated here, possibly also increasing the sophistication of the fluid model in order to

properly take into account the greater complexity of small scale non-linear physics and to

maintain causality.

4. A toy model with fast transition

In the present section we introduce a toy model based on a hyperbolic tangent EoS, which

is conveniently parametrised as

p = −ρΛ





1− tanh
(

ρ−ρt
ρs

)

1− tanh
(

ρΛ−ρt
ρs

)



 , (4.1)

and is depicted in Fig. 2 for a typical shape. In the EoS (4.1) ρt is the typical energy

scale at the transition, ρs is related to the rapidity of the transition, ρΛ is the effective
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cosmological constant, i.e. p(ρΛ) = −ρΛ. This model reduces to a ΛCDM, which in the

UDM language of the previous section is described by p = −ρΛ, in two limits:

ρt → ∞ and ρs → ∞.

r/r
L

0 1 2 3 4 5 6 7 8

p
r
L

K1,0

K0,8

K0,6

K0,4

K0,2

0,0

Figure 2: Illustrative plot of the EoS as a functions of the energy density for the hyperbolic tangent

model. The parameters values are ρt/ρΛ = 5 and ρs/ρΛ = 1. The energy density and the pressure

are normalised to ρΛ. The other five lines are the ones plotted and described in Fig. 1.

The main properties of the EoS (4.1) are the following:

1. The asymptotic behaviour of the pressure for ρ ≫ ρt is p ≈ 0. From the considerations

of the previous section, we expect ρt ≫ ρΛ, which corresponds to a minimum value

of the redshift zt. For instance, we have zt & 1.85 if we want to have ρt & 10ρΛ.

In Figs. 3 we plot the evolution of w as a function of redshift, for ρt/ρΛ = 10 (left

panel) and ρt/ρΛ = 20 (right panel), for three different choices of ρs/ρΛ. The solid line

represents the ΛCDM model, while the horizontal lines respectively represent: a pure

CDM model for w = 0; the boundary between the decelerated and the accelerated

expansion phases of the Universe for w = −1/3. Clearly, from both panels, models

with larger ρs/ρt ratio have a background evolution more similar to that of the

ΛCDM model at all times. On the other hand, a smaller ρs/ρt ratio implies a faster

transition between the CDM-like phase and the ΛCDM phase. In addition, we have

the confirmation that the transition has to take place sufficiently far in the past, i.e.

ρt ≫ ρΛ, in order for the late time evolution of w to be in any case close to that of

the ΛCDM model.
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Figure 3: Evolution of the UDM parameter w = p/ρ in the hyperbolic tangent model, for ρt/ρΛ =

10 (left panel) and ρt/ρΛ = 20 (right panel). For reference we also plot: the w = 0 line representing

a flat pure CDM model (an EdS Universe); the w = −1/3 line representing the boundary between

the decelerated and the accelerated phases; the solid curve representing the evolution of w for a

typical ΛCDM model with ΩΛ = 0.7. In each panel, the three dashed, dash-dotted and dotted

lines respectively correspond to ρs/ρΛ = 1, 10, 100. Clearly, the dotted lines correspond to UDM

models with a slow transition, almost indistinguishable from a ΛCDM at all times, while the dashed

lines well represent UDM models with a very fast transition from a pure CDM to a typical ΛCDM

behaviour. The higher ρt/ρΛ, the earlier the UDM w transits to that of a ΛCDM.

2. The speed of sound is the following:

c2s =
ρΛ
ρs

1− tanh2
(

ρ−ρt
ρs

)

1− tanh
(

ρΛ−ρt
ρs

) , (4.2)

illustrated in the left panel of Fig. 4. It attains its maximum value

c2s
∣

∣

max
=

ρΛ/ρs

1− tanh
(

ρΛ−ρt
ρs

) (4.3)

in ρ = ρt. For our analysis, there are two main cases to consider, assuming ρt ≫ ρΛ:

a) ρt ≪ ρs. In this case, c2s
∣

∣

max
∼ ρΛ/ρs ∼ 0, so that the model is close to a ΛCDM

at all times.

b) ρt ≫ ρs. In this case, we have two subcases: bi) ρΛ . 2ρs, for which c2s
∣

∣

max
∼

ρΛ/2ρs < 1 or bii) ρΛ & 2ρs, for which c2s
∣

∣

max
∼ ρΛ/2ρs > 1. The latter subcase

may in principle imply superluminal perturbations; fortunately, as we shall see,

a-causal effects can be avoided if the transition is sufficiently fast.
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Figure 4: Illustrative plots of the speed of sound and ρ dc2s/dρ as functions of the energy density

for the hyperbolic tangent model. The parameters values are ρt/ρΛ = 5 and ρs/ρΛ = 1. The energy

density and the pressure are normalised to ρΛ.

3. As we explained in the previous section, in order to have a fast transition we must

have ρ dc2s/dρ ≫ 1 in Eq. (3.3) for the Jeans wave number. This quantity is depicted

in the right panel of Fig. 4. For the EoS (4.1) the derivative of c2s is

dc2s
dρ

= −2
ρΛ
ρ2s

tanh

(

ρ− ρt
ρs

) 1− tanh2
(

ρ−ρt
ρs

)

1− tanh
(

ρΛ−ρt
ρs

) = − 2

ρs
tanh

(

ρ− ρt
ρs

)

c2s , (4.4)

which attains its extrema at ρ = ρt± ρs tanh
−1

(√
3/3

)

≃ ρt± 0.66ρs. The maximum

corresponds to the minus sign.

Clearly, the derivative of c2s is important only in the case b) of the previous point. In

this case the maximum is:

ρ
dc2s
dρ

∣

∣

∣

∣

max

≃ ρt
dc2s
dρ

∣

∣

∣

∣

max

≃ ρΛ
ρs

ρt
ρs

. (4.5)

For subcase bii), c2s > 1, we always have ρΛρt/ρ
2
s ≫ 1, while in subcase bi) there is

also the possibility that ρΛρt/ρ
2
s be small.

Let us now consider the case when the transition takes place at the lower limit

zt ∼ 1.85, corresponding to ρt ∼ 10ρΛ. In this case, from Eq. (4.5), the maximum

is 10ρ2Λ/ρ
2
s . Therefore, in order to have a fast transition, we must have ρΛ & ρs.

Then, it is inevitable from point bii) that, if we want the fast transition to take place

just before the accelerated phase of the expansion of the Universe, we must have

c2s > 1. In this case, shortly after the transition the pressure rapidly approaches the

asymptotic value −ρΛ.
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5. Analysis of the Jeans wave number during the transition

The Jeans length is a crucial quantity in determining the viability of a UDM model, because

of its effect on perturbations, which is then revealed in observables such as the CMB and

matter power spectra. We now focus on the Jeans wave number for the toy UDM model

introduced in the previous section and investigate its behaviour as a function of the speed

of sound, in particular around ρ = ρt, in the middle of the transition where the speed of

sound is at its peak.

Starting from the classification we presented in point 2 of the previous section, we are

interested in the case b), namely ρt ≫ ρs, because in this regime a fast transition in the EoS

takes place. The majority of the adiabatic UDM models considered so far in the literature

belongs to the case a) ρt ≪ ρs of point 2 of section 4. For the toy model Eq. (4.1) as well,

ρt ≪ ρs implies that the pressure tends to p ≃ −ρΛ at all times, i.e. to a ΛCDM, as shown

in Fig. 3.

In the case of a fast transition, from Eq. (3.3) for the Jeans wave number, it is in-

teresting to compare the term ρ dc2s/dρ with the remaining ones contained in the squared

brackets, namely:

B :=
1

2
(c2s − w) +

3(c2s −w)2 − 2(c2s − w)

6(1 + w)
+

1

3
. (5.1)

In Figs. 5-7 we plot ρ dc2s/dρ, B and the Jeans wave number kJ as functions of ρ/ρΛ. For

the calculation of kJ we use ρΛ = ΩΛρ0, with ΩΛ = 0.7 and the critical energy density

ρ0 = 3H2
0 , where H0 is the Hubble constant. We choose ρt = 100ρΛ in order to consider

a transition sufficiently back in the Dark Matter epoch (see point 1 of section 4) and

vary the ratio ρs/ρΛ, with ρs = 10ρΛ, 10
−1ρΛ, 10

−4ρΛ, in order to show examples of faster

transitions. From the plots in Figs. 5-7 it is clear that the smaller ρs/ρΛ is, the larger is

the difference between ρ dc2s/dρ and B.
Moreover, from Fig. 5, ρ dc2s/dρ is negative for ρ > ρt, then for ρ ≈ ρt it increases

becoming positive and intersecting the B curve a first time for ρ < ρt. For smaller values

of the energy density, ρ dc2s/dρ decreases again to zero, again intersecting the B curve. In

Figs. 6-7, the same behaviour of the curves takes place and since the difference between

the two curves is much larger, we have chosen a logarithmic scale. Therefore, the negative

part of ρ dc2s/dρ has been omitted.

The intersection points between the curves ρ dc2s/dρ and B represent the moments at

which the Jeans wave number kJ vanishes, as it can be seen from the right panels of Figs.

5-7. In general, around these points the corresponding Jeans length becomes very large,

possibly causing all sort of problems to perturbations, with effects on CMB and structure

formation in the UDM model. On the other hand, for sufficiently small ρs the transition

is fast enough that i) in general the Jeans wave number becomes larger and ii) it becomes

vanishingly small for extremely short times, so that the the effects caused by its vanishing

are sufficiently negligible, as we are going to show in the next section for the CMB and

matter power spectra. As illustrated in Figs. 5-7, by choosing progressively smaller values

of ρs we can obtain progressively larger Jeans wave numbers, while the curve kJ(ρ) starts

to show a plateau shape around the transition.
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ρ/ρΛ. The Jeans wave number kJ is in hMpc−1 units and it has been calculated assuming ΩΛ = 0.7.

The choice of the parameters is: ρt = 100ρΛ (zt ≃ 5.14) and ρs = 10ρΛ.
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Figure 6: Same as in Fig. 4, again with ρt = 100ρΛ (zt ≃ 5.14) but now with ρs = 10−1ρΛ.

Clearly, we are interested in the value of kJ during the transition, because before and

after that the negligible speed of sound implies a vanishing Jeans length, or a very large

kJ. In essence, for a fast enough transition the “average” value of kJ around the transition

is approximated by its value on the plateau - say k̂J - and this is, on average, the minimum

value of kJ, i.e. the maximum Jeans length for the given values of the parameters ρs and

ρt. Thus, we now want to establish a relation between ρs and ρt for any given k̂J. This,
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Figure 7: Same as in Figs. 4-5, again with ρt = 100ρΛ (zt ≃ 5.14) but now with ρs = 10−4ρΛ.

fixing a k̂J which allows for an acceptable matter power spectrum which fits observational

data, will help us to find the ρs needed to have the transition at ρt.

The relative maximum of the Jeans wave number between the two zeros of the curve

kJ(ρ) corresponds approximatively to where dc2s/dρ assumes its maximum value, i.e. in

ρ̂ ≃ ρt − 0.66ρs, as we have shown in point 3 of section 4. Thus, let us define with k̂J
the value of kJ for ρ = ρ̂: as required, it is of the same order of the plateau value (see for

example Fig. 7) of the Jeans wave number during the fast transition.
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Figure 8: The parameter ρs/ρΛ required to obtain a given k̂J (left panel) or a given E (right

panel) vs the transition redshift zt. k̂J and E are the values of the Jeans wave number and the

efficiency at ρ̂ ≃ ρt − 0.66ρs, when dc2s/dρ is maximum. Left panel: k̂J = 0.5, 1, 10 h Mpc−1 from

top to bottom. Right panel: E = 10, 102, 103 from top to bottom. The solid lines represent the

theoretical approximations for k̂J and E, the circles the numerical values, see text.

Evaluating the analytical expression (3.3) of kJ(ρ) at ρ̂ under the assumption ρs ≪ ρt
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we obtain the following approximate expression:

k̂2J ≃ ρt

4 (1 + zt)
2

ρΛ
ρs

∣

∣

∣

∣

∣

6

(

ρs
ρΛ

)2

+
ρs
ρΛ

+ 1− 4
√
3
ρt
ρΛ

∣

∣

∣

∣

∣

. (5.2)

Defining D := −
[

4 (1 + zt)
2 k̂2J + ρt

]

/ρt and making sure that we have ρ dc2s/dρ > B for

ρ = ρ̂, we can then extract from (5.2) the required relation between ρs and ρt:

ρs
ρΛ

=
D +

√

96
√
3 ρt
ρΛ

+D2 − 24

12
. (5.3)

In the left panel plots of Fig. 8, we compare the analytical approximation (5.3) with the

numerical calculations from Eq. (3.3), for ρ = ρ̂ and for k̂J = 0.5, 1, 10 h Mpc−1, as

functions of zt. The agreement between our analytical approximation and the numerical

calculation is clearly very good. As we can see from the figure, if we require larger values

of k̂J then ρs/ρΛ must be smaller, i.e. a faster transition is needed. On the other hand, if

the transition takes place farther in the past, i.e. for increasing values of zt, this constraint

is less stringent.

Having established a good approximation for k̂J, we now want to determine for which

values of ρt and ρs this quantity is well representative of kJ around the transition, i.e. when

we have a plateau as in Fig. 7. In particular, this can be estimated from the difference of the

values of ρ dc2s/dρ and B at ρ = ρ̂. The larger is the difference, the faster is the transition

and the higher is the plateau effect. We therefore define the efficiency parameter E :=

ρ
(

dc2s/dρ
)

/B|ρ=ρ̂ which, under the assumption ρt ≫ ρs, can be analytically approximated

from Eq. (3.3):

E ≃
4
√
3 ρt
ρΛ

6
(

ρs
ρΛ

)2

+ ρs
ρΛ

+ 1
. (5.4)

From this, we obtain a new relation between ρs and ρt:

ρs
ρΛ

=
1

12

√

96
√
3E ρt

ρΛ
− 23E2 − E

E
. (5.5)

In the right panel of Fig. 8, we compare the analytical approximation (5.5) with the nu-

merical calculations, for E = 10, 102, 103, with very good agreement. Notice that the larger

is the efficiency E, the smaller ρs/ρΛ must be, i.e. a faster transition is required.6

It is important to stress that a large efficiency is relevant in order for k̂J to be a more

representative “minimum on average” value of kJ during the transition, i.e. it is not a neces-

sary condition in order to have a fast transition or a model in good agreement with observa-

tion. This can be understood observing the multiplicative term [3ρ(1 + w)] /
[

2(1 + z)2c2s
]

in front of the expression (3.3) of the Jeans wave number kJ. Indeed, for increasing values

of ρt, this term amplifies the difference
(

ρdc2s/dρ
)

−B during the transition, giving a larger

6Assuming ρs ≥ 0 in Eq. (5.5) implies E ≤ 4
√
3 (ρt/ρΛ). This limit in E can be seen in the right panel

of Fig. 8 and in Fig. 10, where in this limit c2sMax → ∞.
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kJ. So, one can obtain models in good agreement with observation even if the efficiency is

low.

Considering the plots in Figs. 5-7, where for ρs = 10ρΛ, 10
−1ρΛ, 10

−4ρΛ we obtain

respectively E = 1.13, 597.26, 692.75, in order to have a fast transition and a pronounced

plateau, we infer that E & 700 is needed. In addition, this requirement was also confirmed

by the study of the matter power spectrum, see the next section.
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Figure 9: Efficiency E as function of zt, for k̂J = 5, 2, 1, 0.5 h Mpc−1 (from top to bottom).

Substituting Eq. (5.3) in Eq. (5.4), we can now obtain an approximate expression of

E as a function of the redshift of the transition zt, which allows us to estimate the range

of zt (and thus ρt) for which the efficiency E is above a certain threshold, for a given k̂J.

In Fig. 9 we show the plot E vs zt for k̂J = 5, 2, 1, 0.5 h Mpc−1 (from top to bottom). For

increasing values of k̂J, the range of zt in which E > 700 becomes larger, as expected.

We can now use the relation (5.3) to understand how large the speed of sound can be

during the transition. To this purpose, we substitute Eq. (5.3) in the maximum value of

c2s , at ρ = ρt. We plot this c2sMax in Fig. 10 as a function of zt for k̂J = 10, 1, 0.5 h Mpc−1

(from top to bottom). On the same figure we also plot the curve of the maximum of the

speed of sound fixing the value of the efficiency at E = 700 (solid red line). Then, the

vertical dashed line corresponds to the value of zt for which ρs → 0 in Eq. (5.5), giving

c2sMax → ∞ in Eq. (4.3). In order to have E > 700, we must consider the area above the

solid red line. We can see that, for increasing values of zt, the value of c2sMax required to

have a fixed k̂J decreases. For example, for k̂J = 1 h Mpc−1, in order to have c2sMax < 1,

the transition has to take place at zt & 50, while if zt ≃ 5 we have c2sMax ∼ 103.

6. The CMB and matter Power spectra: toy model predictions

In order to compare the predictions of our toy UDM model with observational data, we
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Figure 10: Evolution of the maximum value of c2s as function of the redshift zt. The choice of ρs
as function of ρt is given by Eq. (5.3) in the text for k̂J = 10, 1, 0.5 h Mpc−1 (from top to bottom,

dashed, dash-dotted and dotted line) and by Eq. (5.4) for E = 700 (solid red line). Then, the

vertical dashed line corresponds to the value of zt for which ρs → 0 in Eq. (5.5), giving c2
sMax

→ ∞
in Eq. (4.3).

have used a properly modified version of CAMB7 [66] for the computation of the CMB

and the matter power spectra. In particular, we have modified the original definition of

the density contrast for the case of adiabatic UDM models. Indeed, we have to define the

UDM density contrast as δ := δρ/ρm [37], where here ρm = ρ− ρΛ is the “aether” part of

the UDM fluid [67, 68]. In this case, starting from the perturbation theory we outlined in

section 2, we can infer the link between the density contrast and the gravitational potential

via the Poisson equation in the following way:

δ (k; z) =
δρ (k; z)

3H2
0Ωm0 (1 + z)3

= −k2
Φ (1 + z)2

(3/2) Ωm0

, (6.1)

for scales smaller than the cosmological horizon and z < zrec, where zrec is the recombina-

tion redshift (zrec ≈ 103).

We compare the theoretical predictions of our toy model with the WMAP 5-year

data [18, 19, 20] and the luminous red galaxies power spectrum measured by the SDSS

collaboration [15]. The CMB data used in our plots are available on the LAMBDA8

website, while those regarding the matter power spectrum are implemented in a modified

version of the CosmoMC software9.

7http://camb.info/
8http://lambda.gsfc.nasa.gov
9http://cosmologist.info/cosmomc/
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We consider as reference the flat ΛCDM model described by the best-fit parameters

found by combining WMAP5 data with measurements of Type Ia supernovae and Baryon

Acoustic Oscillations [18, 20], with values provided on the LAMBDA website (68% CL

uncertainties): Ωb0h
2 = 0.02265 ± 0.00059, Ωm0h

2 = 0.1143 ± 0.0034, ΩΛ = 0.721 ± 0.015,

H0 = 70.1 ± 1.3 km s−1 Mpc−1, ns = 0.960+0.014
−0.013 and ∆2

R = (2.457+0.092
−0.093)× 10−9. For our

toy model, we keep the same amount of baryons but choose a vanishing CDM content.

In Figs. 11-14 we plot the theoretical predictions of our model, those of the reference

ΛCDM and the observed CMB and matter power spectra data. Each of Figs. 11-14 re-

spectively correspond to ρt/ρΛ = 105, 103, 102, 10, i.e. to zt ≃ 66, 13, 5.7, 2. Guided by the

analysis in section 5, for each transition density ρt we have chosen values of ρs which clearly

show the progressive enhancement of the agreement between the predicted matter power

spectrum and the observed one. Moreover, in the matter power spectrum plots, for each

choice (ρt, ρs) we draw a vertical dashed line representing the corresponding value of k̂J.

We can see from Figs. 11 and 12 that the CMB anisotropies predicted by the reference

ΛCDM and by our toy model are indistinguishable for a large range of ρs. However, while

at the higher transition redshift of Fig. 11 the matter power spectrum also allows the same

broad range of ρs values, at the smaller zt of Fig. 12 we start to see the need for a faster

transition, i.e. a smaller ρs, to have an acceptable power spectrum. As expected from the

analysis of section 5, the effect becomes more pronounced as the transition occurs at the

smaller and smaller redshifts of Figs. 13 and 14. In the case ρs/ρΛ ≃ 0.1 of Fig. 13 the first

acoustic peak of CMB is higher with respect to the observational data. This effect can be

explained by looking at the matter power spectrum. Indeed, the latter moves away from

the reference ΛCDM before the equivalence wavenumber keq ≈ 0.01 h Mpc−1. In other

words, the gravitational potential starts to oscillate and to decay for k < keq, therefore

affecting those modes entering the horizon before the matter-radiation equivalence epoch.

Finally, in Fig. 14 the first CMB spectrum peak is lower than the observed one for any

value of ρs. Note in the left panel of Fig. 3 that, for ρt = 10ρΛ, the background evolution

is sensibly different from the reference ΛCDM. Indeed, in this case our model behaves

like a pure CDM Einstein–de Sitter for a much longer time. One possibility to avoid this

discrepancy is to slightly increase ΩΛ. Therefore, again using ρt = 10ρΛ and ρs = 10−5ρΛ,

in Fig. 15 we have chosen ΩΛ = 0.721, 0.742, 0.772, with the first value again corresponding

to the above mentioned reference ΛCDM and the other two corresponding to the best-fit

and its upper uncertainty obtained by WMAP5 using CMB data only (see [19] and the

LAMBDA website). The agreement between the CMB prediction and the observational

data is again good for ΩΛ = 0.742, with a good matter power spectrum.

7. Conclusions

The last decade of observations of large scale structure [14, 15, 16, 17, 21, 22], the search

for Ia supernovae (SNIa) [7, 8, 9, 10] and the measurements of the CMB anisotropies

[3, 18, 19, 20] are very well explained by assuming that two dark components govern the

dynamics of the Universe. They are DM, thought to be the main responsible for structure
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formation, and an additional DE component that is supposed to drive the measured cosmic

acceleration [11, 12, 13].

At the same time, in the context of General Relativity, it is very interesting to study

possible alternatives. A popular one is that of an interaction between DM and DE, without

violating current observational constraints [11, 28, 29, 30, 31, 32, 33]. This possibility could

alleviate the so called “coincidence problem” [23], namely, why are the energy densities of

the two dark components of the same order of magnitude today. Another attractive,

albeit radical, explanation of the observed cosmic acceleration and structure formation is

to assume the existence of a single dark component: UDM models [38, 39, 50, 48, 49, 47,

52, 58, 36, 53, 57, 55, 62, 54, 37, 65] where, by definition, there is no coincidence problem.

In the present paper we have investigated the general properties of UDM fluid models

where the pressure and the energy density are linked by a barotropic equation of state

(EoS) p = p(ρ) and the perturbations are adiabatic. Using the pressure-density plane,

we have analysed the properties that a general barotropic UDM model has to fulfil in

order to be viable. We have assumed that the EoS of UDM models admits a future

attractor which acts as an effective cosmological constant, while asymptotically in the past

the pressure is negligible, studying the possibility of constructing adiabatic UDM models

where the Jeans length is very small, even when the speed of sound cs is not negligible.

In particular, we have focused on models that admit an effective cosmological constant

and that are characterised by a short period during which the effective speed of sound

varies significantly from zero. This allows a fast transition between an early epoch that is

indistinguishable from a standard matter dominated era, i.e. an Einstein de Sitter model,

and a more recent epoch whose dynamics, background and perturbative, are very close to

that of a standard ΛCDM model.

In the second part of the paper, in order to quantitatively investigate observational

constraints on UDM models with fast transition, we have introduced and discussed a toy

model based on a hyperbolic tangent EoS [see Eq. (4.1)]. We have shown that if the

transition takes place early enough, at a redshift zt & 2 when the effective cosmological

constant is still subdominant, being also fast enough, then these models can avoid the

oscillating and decaying time evolution of the gravitational potential that in many UDM

models causes CMB and matter fluctuations incompatible with observations. Consequently,

the background evolution, the CMB anisotropy and the linear matter power spectrum

predicted by our model do not display significant differences from those computed in a

reference ΛCDM [18, 20], because the Jeans length λJ = a/kJ, where kJ is the Jeans wave

number [see Eq. (3.3)], remains small at all times, except for negligibly short periods, even

if during the fast transition the speed of sound can be large. In this way, our toy models

(and more in general UDM models with a similar fast transition) can evade the “no-go

theorem” of Sandvik et al [50], as we discussed in the introduction.

Specifically, we have analysed the properties of perturbations in our toy model, focusing

on the the evolution of the effective speed of sound and that of the Jeans length during the

transition. In this way, we have been able to set theoretical constraints on the parameters

of the model, predicting sufficient conditions for the model to be viable. Finally, guided

by these predictions and using the CAMB code [66], we have computed the CMB and the
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matter power spectra showing that our toy model, for a wide range of parameters values,

fits observation.

The full likelihood analysis for this model and its parameters would be an interesting

extension of the study carried out here, which we will address in a future work.
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Figure 11: Matter power spectrum (upper panel) and CMB power spectrum (lower panel) for

ρt = 105ρΛ, i.e. a transition at zt ∼ 66. The values of ρs/ρΛ are: ρs/ρΛ ≃ 0.25 (dashed green line),

ρs/ρΛ ≃ 1 (dash-dotted red line) and ρs/ρΛ ≃ 10 (solid blue line). The choice of the parameter

has been done in order to have: k̂J ∼ 2 h Mpc−1 (dashed green vertical line) and E ∼ 4 105 for

ρs/ρΛ ≃ 0.25; k̂J ∼ 1 h Mpc−1 (dashed red vertical line) and E ∼ 9 104 for ρs/ρΛ ≃ 1; k̂J ∼ 0.3 h

Mpc−1 (dashed blue vertical line) and E ∼ 103 for ρs/ρΛ ≃ 10. The reference ΛCDM (see text) is

represented by the solid black line. Notice that the theoretical curves representing the CMB power

spectrum for our models and the reference ΛCDM are indistinguishable.
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Figure 12: Matter power spectrum (upper panel) and CMB power spectrum (lower panel) for

ρt = 103ρΛ, i.e. zt ∼ 13. The values of ρs/ρΛ are: ρs/ρΛ ≃ 10−3 (dashed green line), ρs/ρΛ ≃ 0.05

(dash-dotted red line) and ρs/ρΛ ≃ 0.5 (solid blue line). The choice of the parameter has been done

in order to have: k̂J ∼ 1.5 h Mpc−1 (dashed green vertical line) and E ∼ 7 103 for ρs/ρΛ ≃ 10−3;

k̂J ∼ 0.2 h Mpc−1 (dashed red vertical line) and E ∼ 7 103 for ρs/ρΛ ≃ 0.05; k̂J ∼ 0.07 h

Mpc−1 (dashed blue vertical line) and E ∼ 2 103 for ρs/ρΛ ≃ 0.5. Also in this case zt ∼ 13 the

theoretical curves representing the CMB power spectrum for our models and the reference ΛCDM

are indistinguishable. However, the matter power spectrum requires a faster transition, i.e. smaller

ρs values.
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Figure 13: Matter power spectrum (upper panel) and CMB power spectrum (lower panel) for

ρt = 102ρΛ, i.e. zt ∼ 5.7. The values of ρs/ρΛ are: ρs/ρΛ ≃ 10−5 (dashed green line), ρs/ρΛ ≃ 0.01

(dash-dotted red line) and ρs/ρΛ ≃ 0.1 (solid blue line). The choice of the parameter has been done

in order to have: k̂J ∼ 3.3 h Mpc−1 (dashed green vertical line) and E ∼ 6.9 102 for ρs/ρΛ ≃ 10−5;

k̂J ∼ 0.1 h Mpc−1 (dashed red vertical line) and E ∼ 6.9 102 for ρs/ρΛ ≃ 0.01; k̂J ∼ 0.03 h Mpc−1

(dashed blue vertical line) and E ∼ 6 102 for ρs/ρΛ ≃ 0.1. At the relatively small transition redshift

zt ∼ 5.7 a viable matter power spectrum requires an even faster transition, i.e. smaller ρs values.
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Figure 14: Matter power spectrum (upper panel) and CMB power spectrum (lower panel) for

ρt = 10ρΛ, i.e. zt ∼ 2. The values of ρs/ρΛ are: ρs/ρΛ ≃ 10−7 (dashed green line), ρs/ρΛ ≃ 10−5

(dash-dotted red line) and ρs/ρΛ ≃ 10−4 (solid blue line). The choice of the parameter has been

done in order to have: k̂J ∼ 7 h Mpc−1 (dashed green vertical line) and E ∼ 70 for ρs/ρΛ ≃ 10−7;

k̂J ∼ 0.7 h Mpc−1 (dashed red vertical line) and E ∼ 68 for ρs/ρΛ ≃ 10−5; k̂J ∼ 0.23 h Mpc−1

(dashed blue vertical line) and E ∼ 68 for ρs/ρΛ ≃ 10−4. At this smaller transition redshift

zt ∼ 2 the background evolution in our model is so strongly modified that, no matter how fast the

transition is, i.e. even for ρs values giving an acceptable matter power spectrum, there is no way

to fit the CMB first peak for the given choice of ΩΛ, i.e. the same than the reference ΛCDM (see

text).
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Figure 15: Matter power spectrum (upper panel) and CMB power spectrum (lower panel) for one

of the transition model of Fig. 14, i.e. ρt = 10ρΛ and ρs/ρΛ ≃ 10−7, with a transition at zt ∼ 2, this

time for different values of ΩΛ. The solid blue, red dot-dashed and green dashed lines respectively

correspond to ΩΛ = 0.721, 0.742, 0.772. The reference ΛCDM (solid black line) is the same of the

other figures. With a slightly higher ΩΛ = 0.742 (WMAP5 best fit value with CMB data alone

[19]) our model now produces an acceptable fit.
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