20 research outputs found

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Perspectives on antigen presenting cells in zebrafish.

    No full text

    Functional and Phylogenetic Characterization of Vaginolysin, the Human-Specific Cytolysin from Gardnerella vaginalis▿ †

    No full text
    Pore-forming toxins are essential to the virulence of a wide variety of pathogenic bacteria. Gardnerella vaginalis is a bacterial species associated with bacterial vaginosis (BV) and its significant adverse sequelae, including preterm birth and acquisition of human immunodeficiency virus. G. vaginalis makes a protein toxin that generates host immune responses and has been hypothesized to be involved in the pathogenesis of BV. We demonstrate that G. vaginalis produces a toxin (vaginolysin [VLY]) that is a member of the cholesterol-dependent cytolysin (CDC) family, most closely related to intermedilysin from Streptococcus intermedius. Consistent with this predicted relationship, VLY lyses target cells in a species-specific manner, dependent upon the complement regulatory molecule CD59. In addition to causing erythrocyte lysis, VLY activates the conserved epithelial p38 mitogen-activated protein kinase pathway and induces interleukin-8 production by human epithelial cells. Transfection of human CD59 into nonsusceptible cells renders them sensitive to VLY-mediated lysis. In addition, a single amino acid substitution in the VLY undecapeptide [VLY(P480W)] generates a toxoid that does not form pores, and introduction of the analogous proline residue into another CDC, pneumolysin, significantly decreases its cytolytic activity. Further investigation of the mechanism of action of VLY may improve understanding of the functions of the CDC family as well as diagnosis and therapy for BV

    Conserved IL-2RÎłc signaling mediates lymphopoiesis in Zebrafish

    Full text link
    The IL-2 receptor γ common (IL-2Rγc) chain is the shared subunit of the receptors for the IL-2 family of cytokines, which mediate signaling through JAK3 and various downstream pathways to regulate lymphopoiesis. Inactivating mutations in human IL-2Rγc result in SCID, a primary immunodeficiency characterized by greatly reduced numbers of lymphocytes. This study used bioinformatics, expression analysis, gene ablation, and specific pharmacologic inhibitors to investigate the function of two putative zebrafish IL-2Rγc paralogs, il-2rγc.a and il-2rγc.b, and downstream signaling components during early lymphopoiesis. Expression of il-2rγc.a commenced at 16 h post fertilization (hpf) and rose steadily from 4-6 d postfertilization (dpf) in the developing thymus, with il-2rγc.a expression also confirmed in adult T and B lymphocytes. Transcripts of il-2rγc.b were first observed from 8 hpf, but waned from 16 hpf before reaching maximal expression at 6 dpf, but this was not evident in the thymus. Knockdown of il-2rγc.a, but not il-2rγc.b, substantially reduced embryonic lymphopoiesis without affecting other aspects of hematopoiesis. Specific targeting of zebrafish Jak3 exerted a similar effect on lymphopoiesis, whereas ablation of zebrafish Stat5.1 and pharmacologic inhibition of PI3K and MEK also produced significant but smaller effects. Ablation of il-2rγc.a was further demonstrated to lead to an absence of mature T cells, but not B cells in juvenile fish. These results indicate that conserved IL-2Rγc signaling via JAK3 plays a key role during early zebrafish lymphopoiesis, which can be potentially targeted to generate a zebrafish model of human SCID
    corecore