143 research outputs found

    Rigorous Analytical Model for Metasurface Microscopic Design with Interlayer Coupling

    Full text link
    We present a semianalytical method for designing meta-atoms in multilayered metasurfaces (MSs), relying on a rigorous model developed for multielement metagratings. Notably, this model properly accounts for near-field coupling effects, allowing reliable design even for extremely small interlayer spacings, verified via commercial solvers. This technique forms an appealing alternative to the common full-wave optimization employed for MS microscopic design to date.Comment: 2 pages, 3 figure

    Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean

    Get PDF
    Artificial night lights pose a major threat to multiple species. However, this threat is often disregarded in conservation management and action because it is difficult to quantify its effect. Increasing availability of high spatial-resolution satellite images may enable us to better incorporate this threat into future work, particularly in highly modified ecosystems such as the coastal zone. In this study we examine the potential of satellite night light imagery to predict the distribution of the endangered loggerhead (Caretta caretto) and green (Chelonia mydas) sea turtle nests in the eastern Mediterranean coastline. Using remote sensing tools and high resolution data derived from the SAC-C satellite and the International Space Station, we examined the relationship between the long term spatial patterns of sea turtle nests and the intensity of night lights along Israel's entire Mediterranean coastline. We found that sea turtles nests are negatively related to night light intensity and are concentrated in darker sections along the coast. Our resulting GLMs showed that night lights were a significant factor for explaining the distribution of sea turtle nests. Other significant variables included: cliff presence, human population density and infrastructure. This study is one of the first to show that night lights estimated with satellite-based imagery can be used to help explain sea turtle nesting activity at a detailed resolution over large areas. This approach can facilitate the management of species affected by night lights, and will be particularly useful in areas that are inaccessible or where broad-scale prioritization of conservation action is required. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved

    Case report: Blindness associated with Learedius learedi trematode infection in a green sea turtle, Chelonia mydas, of the northern Red Sea

    Get PDF
    Spirorchiid blood flukes are widespread in sea turtles, causing disease and mortality in their populations, with high prevalence in several ocean basins. Besides being leading parasitic causes of sea turtle strandings in several parts of the world, these infectious agents can cause endocarditis, vasculitis, thrombosis, miliary egg granulomas, and aneurysms, which ultimately may compromise the survival of green sea turtles. More severe cases may also result in multifocal granulomatous meningitis or pneumonia, both of which can be fatal. Herein, we report the first case of severe trematode infection, Caused by Learedius learedi, in a green sea turtle in the northern Red Sea; this infection is associated with bilateral blindness. Necropsy revealed multiple granulomas with intralesional trematode eggs in the optic nerve, eyes, spleen, heart, and lungs. The parasite was identified as Learedius learedi through specific primers of the ribosomal genome and COI sequences obtained from GenBank. Altogether, these findings emphasize the importance of recognizing the systemic nature of this particular fluke infection to ultimately protect the lives of these marine animals and ensure the sustainability of these species in the wild

    West Nile Virus: Seroprevalence in Animals in Palestine and Israel

    Get PDF
    West Nile virus (WNV) epidemiological situation in Israel and Palestine, due to their unique location, draws attention following to the global spread of West Nile fever (WNF). Although much information is available from Israel on clinical cases and prevalence of WNV, clinical cases are rarely reported in Palestine, and prevalence is not known. The objectives of this study were to determine WNV seroprevalence in various domestic animals in Palestine and to reevaluate current seroprevalence, force of infection, and risk factors for WNV exposure in horses in Israel. Sera samples were collected from 717 animals from Palestine and Israel (460 horses, 124 donkeys, 3 mules, 50 goats, 45 sheep, and 35 camels). Two hundred and ten horses were sampled twice. The level of WNV antibodies was determined using commercial Enzyme-linked Immunosorbent Assay (ELISA) Kit. Seroprevalence in equids was 73%. Seroprevalence in Israel (84.6%) was significantly higher than in Palestine (48.6%). Seroprevalence in horses (82.6%) was significantly higher than in donkeys and mules (39.3%). Multivariable statistical analysis showed that geographical area, landscape features (altitude), environmental factors (land surface temperature during the day [LSTD]), species, and age significantly influenced WNV seroprevalence. Fourteen of 95 (14.7%) sheep and goats and 14/35 camels (40%) sampled in Palestine were seropositive for WNV. Of the horses that were sampled twice, 82.8% were seropositive for WNV at the first sampling, and all remained seropositive. Three of the seronegative horses, all from Palestine, converted to positive when resampled (8.5%). The results indicate that domestic animals in Palestine were infected with WNV in the past, and the seroconversion indicates that WNV was circulating in Palestine in the summer of 2014. Control measures to prevent human infection should be implemented in Palestine. Anti WNV antibodies in domestic animals suggest that those species can be used as sentinels for WNV activity in areas where most horses are either seropositive or vaccinated.This research was supported financially by grant 2014.52146 funded by the Netherlands Ministry of Foreign Affairs (The Hague, Netherlands)

    Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications

    Get PDF
    Clinically compliant human embryonic stem cells (hESCs) should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP)-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido

    Susceptibility of Human Lymphoid Tissue Cultured ex vivo to Xenotropic Murine Leukemia Virus-Related Virus (XMRV) Infection

    Get PDF
    BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV) was generated after a recombination event between two endogenous murine leukemia viruses during the production of a prostate cancer cell line. Although the associations of the XMRV infection with human diseases appear unlikely, the XMRV is a retrovirus of undefined pathogenic potential, able to replicate in human cells in vitro. Since recent studies using animal models for infection have yielded conflicting results, we set out an ex vivo model for XMRV infection of human tonsillar tissue to determine whether XMRV produced by 22Rv1 cells is able to replicate in human lymphoid organs. Tonsil blocks were infected and infection kinetics and its pathogenic effects were monitored RESULTS: XMRV, though restricted by APOBEC, enters and integrates into the tissue cells. The infection did not result in changes of T or B-cells, immune activation, nor inflammatory chemokines. Infectious viruses could be recovered from supernatants of infected tonsils by reinfecting DERSE XMRV indicator cell line, although these supernatants could not establish a new infection in fresh tonsil culture, indicating that in our model, the viral replication is controlled by innate antiviral restriction factors. CONCLUSIONS: Overall, the replication-competent retrovirus XMRV, present in a high number of laboratories, is able to infect human lymphoid tissue and produce infectious viruses, even though they were unable to establish a new infection in fresh tonsillar tissue. Hereby, laboratories working with cell lines producing XMRV should have knowledge and understanding of the potential biological biohazardous risks of this virus

    BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling

    Get PDF
    Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research
    corecore