1 2	Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean
3 4 5	Tessa Mazor ^{a,b} , Noam Levin ^c , Hugh P. Possingham ^a , Yaniv Levy ^d , Duccio Rocchini ^e , Anthony J. Richardson ^f and Salit Kark ^{a,b}
5 6 7 8	Anthony J. Kichardson and Sant Kark
8 9	^a ARC Centre of Excellence for Environmental Decisions, School of Biological
10	Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia;
11 12	tessa.mazor@uqconnect.edu.au; h.possingham@uq.edu.au
12	^b The Biodiversity Research Group, Department of Evolution, Ecology and Behaviour,
13 14 15	The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; salit.kark@gmail.com
16	71704, Israel, <u>sant.kark@gman.com</u>
17	^c Department of Geography, The Hebrew University of Jerusalem, Mount Scopus,
18	Jerusalem 91905, Israel; <u>noamlevin@mscc.huji.ac.il</u>
19	
20	^d Israel's Sea Turtle Rescue Centre, Nature & Parks Authority. Mevoot Yam, P.O.B.
21	1174 Mikhmoret 40297, Israel; <u>yaniv@npa.org.il</u>
22	
23	^e Edmund Mach Foundation, Research and Innovation Centre, Department of
24	Biodiversity and Molecular Ecology, GIS and Remote Sensing Unit, Via Mach 1,
25	38010, San Michele all'Adige (TN), Italy; <u>ducciorocchini@gmail.com</u>
26	
27	^f School of Mathematics and Physics, The University of Queensland, Brisbane,
28	Queensland 4072, Australia; <u>Anthony.Richardson@csiro.au</u>
29 20	
30 31	
32	
32 33	
34	
35	Corresponding author:
36	Tessa Mazor
37	ARC Centre of Excellence for Environmental Decisions
38	The School of Biological Sciences
39	The University of Queensland,
40	Brisbane, 4072, Australia
41	Phone: 972-2-6585714
42	And
43	The Biodiversity Research Group,
44	Department of Evolution, Ecology and Behaviour,
45	The Hebrew University of Jerusalem,
46	Jerusalem 91904, Israel
47	E-mail: <u>tessa.mazor@uqconnect.edu.au</u>
48	

49 Abstract

50 Artificial night lights pose a major threat to multiple species. However, this threat is 51 often disregarded in conservation management and action because it is difficult to 52 quantify its effect. Increasing availability of high spatial-resolution satellite images may 53 enable us to better incorporate this threat into future work, particularly in highly 54 modified ecosystems such as the coastal zone. In this study we examine the potential of 55 satellite night light imagery to predict the distribution of the endangered loggerhead 56 (Caretta caretta) and green (Chelonia mydas) sea turtle nests in the eastern 57 Mediterranean coastline. Using remote sensing tools and high resolution data derived 58 from the SAC-C satellite and the International Space Station, we examined the 59 relationship between the long term spatial patterns of sea turtle nests and the intensity of 60 night lights along Israel's entire Mediterranean coastline. We found that sea turtles nests 61 are negatively related to night light intensity and are concentrated in darker sections 62 along the coast. Our resulting GLMs showed that night lights were a significant factor 63 for explaining the distribution of sea turtle nests. Other significant variables included: 64 cliff presence, human population density and infrastructure. This study is one of the first 65 to show that night lights estimated with satellite-based imagery can be used to help 66 explain sea turtle nesting activity at a detailed resolution over large areas. This approach 67 can facilitate the management of species affected by night lights, and will be particularly useful in areas that are inaccessible or where broad-scale prioritization of 68 69 conservation action is required.

70

71 Keywords: artificial night lights; *Caretta caretta*; *Chelonia mydas*; coastal

72 conservation; satellite imagery; sea turtle conservation.

73 **1. Introduction**

74 Coastal zones are experiencing rapid population growth around the world (Turner et al., 75 1996) and attract increasing levels of tourism, trade and development (Shi and Singh, 76 2003; Stancheva, 2010). These anthropogenic pressures threaten biodiversity in the 77 coastal environment, affecting the dynamics of flora and fauna populations and 78 ecosystem processes (Chapin et al., 2000; Crain et al., 2009). While the effects of some 79 human-caused threats have been examined in detail, our understanding of the 80 consequences of artificial night lights on biodiversity in coastal areas, which have 81 rapidly increased in both spatial extent and intensity in recent decades, remains limited 82 (Longcore and Rich, 2004). 83 Researchers have studied the effect of night lights on species for many years 84 (Longcore and Rich, 2004). Previous studies exploring the impact of artificial lights on organisms were mainly conducted by ecologists studying species of birds (e.g. 85 86 Longcore, 2010), sea turtles (e.g. Lorne and Salmon, 2007), bats (e.g. Jung and Kalko, 87 2010) and freshwater fish (e.g. McConnell et al., 2010). Results from these studies 88 demonstrate that night lights can attract, repel, and disorientate organisms in their 89 natural settings. These reactions can further alter behavioural patterns such as reproduction, foraging, migration, communication and predator-prey relationships 90 91 (Longcore and Rich, 2004). Such studies provide evidence that artificial lights often 92 have adverse effects on organisms (Salmon 2003; Bird et al., 2004; Longcore and Rich, 93 2004; Bourgeois et al., 2009; Kempenaers et al., 2010; Longcore, 2010). 94 The threats of artificial night lights to biodiversity are rarely explored at a broad 95 spatial scale. Previous studies were predominantly conducted at a local scale in field or 96 laboratory settings (Witherington and Bjorndal, 1991; Salmon et al., 1995b; Grigione

97 and Mrykalo, 2004). However, broader, regional spatial patterns of activities and 98 processes that threaten the existence of species are important to examine, especially 99 when management practises are applied at larger spatial scales, as is often the case in 100 regional conservation planning for large marine and terrestrial mammals and reptiles 101 (Watzold et al., 2006). Today, with our improved ability to estimate anthropogenic 102 pressures and activities from advanced sources such as satellite imagery and remote 103 sensing, we are able explore the impact of human-threats on species at various scales 104 (Kerr and Ostrovsky, 2003).

105 Few studies have used satellite night light data for the assessment of threats and 106 impacts on species, biological or environmental factors. Of the limited studies, night 107 light imagery has been used in conservation to derive an index for environmental 108 sustainability (Sutton, 2003), has been used to explore the temporal impact of light 109 pollution on marine ecosystems (Aubrecht et al., 2010a) and has been incorporated into 110 the management of protected areas (Aubrecht et al., 2010b). However, the effect of 111 artificial light sources and the night environment has largely been neglected in reserve 112 system or corridor designs (Bird et al., 2004; Longcore and Rich, 2004). No studies, as 113 far as we are aware, have explicitly examined the potential of using satellite night light 114 imagery as a tool for examining the distribution of sea turtle nests and its further 115 conservation application.

116 *1.1 Sea turtles – threats and factors affecting nesting patterns*

117 Sea turtle species Caretta caretta (Linneaus, 1758, loggerhead turtle) and Chelonia

118 *mydas* (Linneaus, 1758, green turtle) are globally endangered (Calase and

119 Margaritoulis, 2010). Their worldwide conservation status underlines the importance of

120 understanding factors that influence their distribution and vulnerability. Sea turtles

121	display philopatry, where nesting turtles return to their original place of birth (Carr,
122	1975; Bowen et al., 1994). This behaviour is known to operate at a relatively coarse
123	regional scale ~10km-50km (Miller et al., 2003) and factors that drive nesting sea
124	turtles within this coarse spatial-scale are poorly understood (Weishampel et al., 2003;
125	Garcon et al., 2009).
126	One important factor that is known to affect sea turtle behaviour is the presence
127	of night lights. Ecologists have found artificial lights disrupt sea turtle behaviour in two
128	ways. First, night lights reduce the ability of sea turtle hatchlings to find the sea.
129	Hatchlings are either attracted to the artificial light source or are disorientated (Salmon,
130	2003; Tuxbury and Salmon, 2005; Lorne and Salmon, 2007; Kawamura et al., 2009).
131	Disoriented turtle hatchlings may fail to find the sea, thereby reducing population
132	viability (Lorne and Salmon, 2007; McConnell et al., 2010).
133	Second, there is the poorly understood phenomenon of artificial beach-front
134	lighting preventing turtles from nesting. Nesting females of C. caretta and C. mydas are
135	deterred by artificial lighting (Witherington, 1992; Salmon et al., 1995b; Witherington
136	and Martin, 2000; Bourgeois et al., 2009). The repellent effect could be dose dependent
137	so that highly lit areas deter all nesting and poorly lit areas have a minor impact
138	(Margaritoulis, 1985; Witherington, 1992). Most of these studies are on beach sites
139	along the coast of Florida (Salmon et al., 1995b; Witherington and Martin, 2000;
140	Salmon, 2003; Weishampel et al., 2006; Aubrecht et al., 2010a). Sea turtle researchers
141	along the coast of the Mediterranean Sea seldom investigate this relationship (Kaska et
142	al., 2003; Aureggi et al., 2005) and very few studies have explored this issue at a
143	regional or broad spatial scale. Overall, the relationship between night lights and its
144	effect on sea turtle nesting is poorly understood.

145	Previous studies found that sea turtles nest in non-random patterns and their
146	selection of nest site is influenced by specific factors (Mellanby et al., 1998;
147	Weishampel et al., 2003). Besides night lights, variables that are considered to influence
148	sea turtle nesting include: beach dimensions (Kikukawa et al., 1996; Mazaris et al.,
149	2006), beach slope (Wood and Bjorndal, 2000) sand characteristics (Le Vin et al., 1998;
150	Kikukawa et al., 1999), beach nourishment (Brock et al., 2009), climate change (Van
151	Houtan and Halley, 2011), predation (Leighton et al., 2011), human settlements
152	(Kikukawa et al., 1996) and coastal development such as seawalls (Rizkalla and Savage,
153	2011). Understanding the impact of these variables on sea turtle nesting is important for
154	setting spatial conservation priorities (Moilanen et al., 2009).
155	In this paper we investigate whether night lights, as quantified using space-borne
156	images, can be used to help predict the distribution of sea turtle nests and we discuss the
157	potential application of this tool in future conservation applications. The major
158	questions we test in this study are:
159	1) Can night lights derived from satellite imagery help us explain the distribution of
160	sea turtle nests?
161	2) Do night lights remain important at predicting sea turtle nest activity when
162	considering additional anthropogenic and environmental variables?
163	
164	2. Materials and methods
165	2.1 Study area
166	The Mediterranean Sea coastline of Israel is ~190 km long and has a north-south
167	orientation (with the exception of the Carmel and Haifa Bay; Schattner, 1967; Fig. 1).

168 The overall width of beaches in Israel is between 20-100 m, with wider areas at river

mouths. Israel's southern beaches (south of Tel Aviv) are characterised by relatively
wider, sandy beaches (compared with northern beaches) with transverse sand dune
fields, which have formed behind the shore in the past 1,000 years (Schattner, 1967;
Tsoar, 2000). In comparison, northern beaches are generally narrower and bordered by
aeolionite (kurkar) cliffs. There are thirty-two rivers and ephemeral streams that flow
through this coastal stretch into the sea (Lichter et al., 2010) and tidal movements in
Israel are limited to a range of 15-40 cm (Lichter et al., 2010).

176 Rectangular spatial units along the Israeli coastline were designed to examine 177 the relationship between turtle nesting sites, night lights and associated anthropogenic 178 and environmental factors. A buffer of 500 m to the east and west of the coastline was 179 constructed and 336 spatial units of 1 x 0.5 km were positioned in this space. The buffer 180 was chosen to allow for longitudinal location errors, as sea turtle nest surveyors 181 sometimes reported only the latitudes. The dimensions of the spatial unit were based on 182 the resolution of available night light imagery and expert advice regarding nesting turtle 183 behaviour.

184 2.2 Sea turtle data

185 Sea turtle data for this study were provided by Israel's National Parks Authority (NPA). 186 We used nesting data of the two sea turtle species, *C.caretta* and *C.mydas*, which nest 187 on the Mediterranean beaches of Israel (Kuller, 1999; Levy, 2003). The annual number 188 of sea turtle nests have been increasing exponential within the past two decades, 189 however specific reasons for their increase are unknown (Levy, 2011; see Appendix 190 Fig. A1). Sea turtle surveys along the entire coast of Israel were performed by Israel's 191 National Parks Authority since 1993, during the turtle nesting season from May-August. 192 At the start of the nesting season (May), surveys were conducted two or three times a

week. During peak season (June - July), beaches were surveyed daily. Towards the end
of the season (August), surveys were performed twice a week. For survey purposes, the
Mediterranean coast of Israel was divided equally into seven survey sections. Beach
sections from Herzliya to Tel Aviv (~8 km) were not surveyed due to high human
population density and development.

198 The beach sections were scanned at sunrise by Israel's National Parks Authority 199 rangers along with trained volunteers. Surveys were conducted with 4WD vehicles 200 driven close to the water edge, with a minimum of two people searching from the 201 windows. Turtle nests were identified by the sand tracks that the female turtle leaves 202 behind after laying her eggs. The two turtle species can easily be identified via their 203 large and unique imprints, nest depth and position on the sand. The nest position was 204 recorded via Garmin GPS units. Turtle tracks that did not result in a nest (false crawl), 205 but seem to clearly be a nesting attempt were also recorded. Hatchling emergence or 206 success was not systematically recorded over the years.

207 We examined and mapped the turtle nest data using ArcGIS (ESRI, 2011). We 208 combined the two sea turtle species together due to their related choice of nesting 209 beaches (Broderick and Godley, 1996; Weishampel et al., 2003) and the low number of 210 C. mydas turtle nests in our study (0.8% of all nests). We used two variables derived 211 from the turtle nest surveys: (1) the total number of nests found in each spatial unit 212 summed over nineteen years (1993-2011; Fig. 1a); (2) the occupancy 213 (presence/absence) status of each spatial unit for turtle nests in each year and then 214 summed over a nineteen year period (1993-2011) – this will be referred to as turtle nest 215 persistence (Fig. 1b). This was performed to limit influences from individual years (Fig. 216 A1). When the total number of turtle nests was summed per spatial unit for this time

217	frame, there was a mean of 9.63 \pm 15.5, a median of 3.5 and a range from 0 - 169
218	individual turtle nests. Twenty-six percent of the surveyed spatial units in our study had
219	no turtle nests (absences).
220	2.3 Night light data
221	Two satellite images of the Israel coastline were used for this study, SAC-C (2007; 300
222	m) and ISS (2003; 60 m). We used a 2007 satellite image from Argentine's Space
223	Agency (CONAE, 2007) acquired by the High Sensitivity Technological Camera
224	(HSTC) onboard the SAC-C satellite launched in 2000 (Fig. 2a). This image showed
225	night lights at a spatial resolution of 300 m (Colomb et al., 2003) for the entire Israeli
226	coastline. The SAC-C image underwent an inverse Fourier transformation to remove
227	striping effects, using Idrisi Taiga (Clark Labs, 2010; Levin and Duke, 2012). Our
228	second image, ISS, was from astronaut photography onboard the International Space
229	Station (ISS mission 6). Imagery was obtained via Kodad DSC 760 camera at a
230	resolution of 60 m in 2003 (Image Science and Analysis Laboratory, 2003). The spatial
231	extent of this image did not cover the entire Israeli coastline (missing data beyond
232	Haifa) but was included due to the difficulty of obtaining high spatial resolution satellite
233	images which covers the entire coastline of Israel. Night light data for 286 of the 336
234	spatial units were covered by the ISS image (Fig. 2b). For both satellite images we
235	determined an average pixel brightness value for each spatial unit with ArcGIS tools
236	(ESRI, 2011).
237	2.4 Other explanatory variables

In addition to testing the importance of night lights at predicting turtle nesting patterns,
we examined the effect of 21 additional variables that were hypothesized to affect sea
turtle nesting and which were available for the full study region. These variables were

241 divided into two groups; anthropogenic and environmental (see Table 1 for the full list242 of variables tested).

243 2.5 Statistical analysis

244 Our statistical analysis was designed to address our two major research questions;

245 2.5.1 Satellite night lights and sea turtle nests

246 We tested the ability of the two night light images to explain turtle nest distribution 247 along the coast of Israel. Spearman's rank correlation coefficients were used to test for 248 associations between turtle nest distribution and the average pixel values derived from 249 the two night light images. To test our hypothesis that turtles prefer nesting in darker 250 areas, we split our data into three night light intensity groups based on pixel values 251 (high, moderate and low – each group with an equal number of spatial units) from both 252 satellite images. The three groups were compared via the non-parametric Kruskal-253 Wallis one-way analysis of variance conducted in R software (R Development Core 254 Team, 2011). Quantile regression was used to further explore the relationship between 255 sea turtle nests and night lights along the entire Israel coastline using the SAC-C image. 256 Quantile regression was performed using the R quantreg package (Koenker, 2007) with 257 an exponential fit and bootstrapping for residuals. 258 2.5.2 The importance of satellite night lights

259 Here we examined the importance of night lights when considering other variables

260 which may influence sea turtle nest distribution. We also aimed to construct models that

261 predict: (1) the total number of nests per spatial unit and (2) turtle nest persistence, for

the entire Israeli coastline with night lights (using the SAC-C image) and 21 broad scale

263 explanatory variables (Table 1). We used generalized linear modeling (GLM)

264 undertaken in R. GLMs simultaneously explore which variables and/or their interactions

265	explain the highest amount of variability in turtle nest distribution. Prior to beginning
266	the modeling procedure we tested for collinearity among the explanatory variables using
267	Spearman rank correlations coefficient and Variance Inflation Factors (VIFs). We used
268	a cut-off value of 3 for removing collinearity from the resulting VIFs (Zuur et al.,
269	2007), and ± 0.5 for Spearman's rank correlations coefficients between pairs of variables
270	(Booth et al., 1994). For this analysis we used GLMs with a Poisson distribution,
271	detected overdispersion and corrected the standard errors using quasi-GLMs (Zuur et
272	al., 2009). Due to deviations in the coastline, the area of each spatial unit was not
273	constant and therefore we performed our models with an offset variable for area (Zuur
274	et al., 2009). Model simplification was conducted by dropping each explanatory
275	variable in turn and removing the term that led to the smallest non-significant change in
276	deviance according to F-tests (using the drop1 command in R; Zuur et al., 2009). Model
277	validation was conducted using the deviance residuals plotted against the fitted
278	residuals, explanatory variables and spatial coordinates. We also tested our raw data and
279	models residuals for spatial auto-correlation using spline correlograms with 95%
280	pointwise bootstrap confidence intervals and a maximum lag distance of 10km
281	(Bjørnstad and Falck, 2001; Zuur et al., 2009).
282	

282

3. Results

284 *3.1 Satellite night lights and sea turtle nests*

285 Night lights from the SAC-C image were negatively correlated with the total number of

sea turtle nests (Spearman's rho = -0.31, p = 4.07e-09; Fig. 3a) and nest persistence

287 (Spearman's rho = -0.34, p = 8.12e-11; Fig. 3b) across the Israel coastline. Comparison

288 of the two satellite images when related to sea turtle nests indicated that the ISS image

289	with the higher resolution gave only slightly more significant results compared to the
290	SAC-C image (Table 2). We found that the total number of sea turtle nests (Kruskal
291	Wallis test, SAC-C $p = 4.7e-0$, ISS $p = 1.01e-06$; Fig. 4) and nest persistence (Kruskal
292	Wallis test, SAC-C $p = 3.24e-08$, ISS $p = 1.28e-07$; Fig. 5) within our spatial units were
293	significantly different for the three groups of night light intensity. The mean rank of
294	turtle nest numbers was highest in the low pixel group (mean SAC-C = 133.13 ; ISS =
295	111.42), which refers to darker sites, compared to the mean of the moderate (mean
296	SAC-C = 169.91; ISS = 147.08) and high (mean SAC-C = 202.46; ISS = 173.82) groups
297	for both satellite images. Similarly, for both satellite images the mean rank of turtle
298	nest persistence was highest in the low pixel group (mean SAC-C = 206.50 ; ISS =
299	175.28), compared to moderate (mean SAC-C = 167.87 ; ISS = 148.40) and high (mean
300	SAC-C = 131.13 ; ISS = 108.65) groups. Quantile regression showed that the 0.5
301	(median) and 0.75 quantiles were statistically significant for the relationship between
302	night lights and sea turtle nests along the entire coastline of Israel (see Appendix Table
303	A1).

304 *3.2 The importance of satellite night lights*

305 Night lights were found to be a significant explanatory variable for explaining the sea 306 turtle nesting activity in both of our resulting GLMs (Table 3). Our resulting models were able to predict 18% (pseudo r^2) of the total number of sea turtle nests and 32% of 307 308 sea turtle nest persistence within our spatial units along the entire coast of Israel. Of the 309 twenty-two (including night lights) explanatory variable used in our modeling process, 310 five variables were considered important for explaining the total number of sea turtle nests within our spatial units: night lights (F = 7.60, p = 0.01), cliffs (F = 26.22, p = 311 312 5.19e-07), the interaction between human population density and infrastructure (F =

313 10.22, p = 1.53e-03) and red sandy clay loam (F = 5.63, p = 0.02). Similar variables 314 were considered significant for explaining sea turtle nest persistence, three two-way 315 interactions made up our final model: the interaction between beach area and human 316 population density (F = 4.91, p = 0.03), night lights and cliffs (F = 4.62, p = 0.03) and 317 human population density and infrastructure (F = 5.57, p = 0.02; Table 3).

The only explanatory variable showing signs of collinearity with night lights was built up areas along the coast (Spearman's rho = -0.61) however this variable was not significant in our models. We also found that the only interaction with night lights was the presence of cliffs in our model that explains sea turtle nest persistence. No spatial autocorrelation or collinearity (VIFs all below 3; Table A2) among our explanatory variables was found and our models met the validation requirements (Fig. A2; Fig. A3).

325

326 **4. Discussion**

327 This study demonstrates a novel application of satellite night light imagery to help 328 predict nesting activity of endangered sea turtles. While the impact of artificial night 329 lights on biodiversity is often overlooked, we found that the intensity of coastal night 330 lights derived from satellite-imagery is a significant determinant of sea turtle nest 331 distribution. Results from our GLMs indicated that night light intensity remained an 332 important predictor of sea turtle nest distribution when other anthropogenic and 333 environmental factors were considered. For endangered species with large scale spatial 334 movement such as sea turtles, where factors that influence their selection of nesting sites 335 are largely unknown, improving our ability to determine their nesting patterns can 336 enable us to better direct and target our conservation efforts.

337 This is one of the first studies to explore the relationship between nesting sea 338 turtles and night lights at a regional spatial scale. Our results indicated that the intensity 339 of artificial night lights along the Mediterranean coastline of Israel affects sea turtle 340 nesting patterns, where well lit beaches have lower occurrences of nesting turtles. These 341 large scale findings are supported by local-scale studies that show nesting is influenced 342 by night light intensity (Margaritoulis, 1985; Witherington, 1992). Thus, our broad scale 343 study provides support for the hypothesis that sea turtles prefer darker beach sites for 344 nesting. By utilizing information derived from satellite night light imagery we can 345 explore broader spatial patterns between species and the night environment which were 346 previously spatially restrictive. Our results suggest that night lights derived from 347 satellite-based images provide a useful tool for assessing broad-scale spatial patterns of 348 sea turtle nest sites.

349 In addition to artificial night lights, we identified other new and important 350 variables and their interactions that help predict sea turtle nesting activity at a broad 351 spatial scale. The significant predictors found in both our GLMs, besides night lights, 352 were the presence of cliffs (positive effect), human population density (negative effect) 353 and infrastructure (negative effect). Although we were limited with the inclusion of 354 explanatory variables from data availability at this broad scale, we found new and 355 unexplored explanatory variables that influence sea turtle nesting. This is the first study 356 to find that the presence of coastal cliffs have an important positive influence on sea turtle nests. Findings by Kikukawa et al. (1999) indicated that beach height is an 357 358 important variable, and Salmon et al. (1995a) found a positive correlation with tall 359 objects along the shoreline, however to our knowledge, no studies have explicitly 360 explored the effect of cliffs. While cliffs were a positive effect on sea turtle nests in our

361 study, we suggest that there may be negative effects in some countries with large tidal 362 ranges or areas where sea levels are beginning to rise (Fish et al., 2005). In such areas 363 the presences of cliffs may cause a barrier for nesting turtles, where the landward 364 movements of nesting turtles are restricted, thus a potential cause of nest destruction by 365 sea water inundation (Fish et al., 2005). We recommend further investigation of other 366 beaches with cliffs around the Mediterranean to better understand the effect that coastal 367 cliffs have on sea turtle nests and its further application for conservation. Hence, at this 368 broad scale we were able to identify variables that influence sea turtle nesting, which is 369 particularly important to consider in conservation management when very little is 370 known about their spatial distribution.

371 Night lights and cliffs as individual components have an important effect on sea 372 turtle nests and combined have an important positive interaction effect (Table 3). This is 373 exemplified by the case of Netanya (Fig. 2), a coastal city in Israel where beaches have 374 a high number of sea turtle nests, shoreline cliffs and bright night lights. This interaction 375 should be further explored in small-scale field studies to understand the nature of this 376 relationship and the impact that cliffs near coastal cities exhibit on nesting sea turtles. 377 Beach areas with bright night lights and beach cliffs may be prime areas to focus 378 conservation efforts for the recovery of nesting sea turtle populations.

Anthropogenic based variables may be useful for predicting species distribution and activity within highly modified environments such as the coastal zone. In previous studies at local scales, environmental variables have been predominantly used for determining sea turtle nesting activity (Wood and Bjorndal, 2000; Karavas et al., 2005; Mazaris et al., 2006). However, findings from our study suggest that human based variables were important. Other studies which have included human based variables

385	have also found that sea turtle nests were negatively influenced by such factors. For
386	example, Weishampel et al. (2003) found that nests of green and loggerhead sea turtles
387	increased as the density of human development was lower along beaches in east Florida.
388	A multiple regression approach by Kikukawa et al. (1999) also found that loggerhead
389	sea turtle nests in Okinawajima, Japan, significantly increased with distance from
390	human settlements. We suggest that today with the increasing number of anthropogenic
391	threats on the coastal environment that inclusion of human based factors may serve as
392	helpful predictors of sea turtle nesting patterns or other coastal species.
393	Artificial night lights may pose a greater threat to sea turtle nests compared with
394	other anthropogenic threats. Our GLM results showed that night lights were more
395	significant at explaining sea turtle nests distribution then other anthropogenic threats
396	such as the human population density, infrastructure and built up areas. Unlike these
397	other variables, night lights account for the presence of most human night time activity,
398	including beach side restaurants, shopping districts, ports and residential areas.
399	Interestingly, we also found that higher resolution satellite night light imagery,
400	comparison between the ISS and SCC-C images, was better related to sea turtle nesting
401	patterns (Table 2). Thus, the threat of night lights on sea turtle nesting, while evident
402	from laboratory and small-scale field experiments (Witherington, 1992; Salmon et al.,
403	1995b) can also be explored with the use of high resolution satellite imagery.
404	To date, very few explanatory variables and models have been identified which
405	can aid our understanding of nesting patterns of endangered sea turtle species (Garcon
406	et al., 2009). Clearly there are additional unknown factors which affect sea turtle nest
407	distribution. Our resulting models were able to explain 18% and 32% of turtle nest
408	variance. These values suggest that there are other factors which contribute to predicting

409 sea turtle nest distribution. Other contributing factors could be related to the hypothesis 410 that sea turtles use multiple environmental factors/cues with thresholds to reach before 411 choosing a nesting site (Wood and Bjorndal, 2000; Mazaris et al., 2006). Alternatively, 412 these factors could be due to recently explored climatic factors, predation, other 413 anthropogenic threats, interactions among variables (Leighton et al., 2011; Rizkalla and 414 Savage, 2011; Van Houtan and Halley, 2011) or small scale environmental conditions 415 that are not found at this large scale (Wood and Bjorndal, 2000). Thus, with the little 416 knowledge we have on sea turtle nesting patterns, combined with their endangered 417 status, we propose that satellite night light imagery may be a useful tool for the 418 prediction of sea turtle nest distribution at a broad spatial scale and recommend its 419 incorporation into future studies.

420 4.1 Conservation Implications

421 The advancements in spatial analysis and applications (Sen et al., 2006) continually 422 allow us to consider new techniques and methods to explore and predict species 423 assemblages and patterns at broader spatial scales with higher resolution (Kerr and 424 Ostrovsky, 2003; Turner et al., 2003). In recent years studies have been quantifying 425 biodiversity with remote sensing tools and satellite imagery (Levin et al., 2007; Lahoz-426 Monfort et al., 2010; Rocchini et al., 2010; Bradter et al., 2011). While such tools and 427 methods cannot replace field work at smaller scales, they can serve as useful tools for 428 exploring larger spatial-scales. In particular circumstances where field work locations 429 are inaccessible or spatial extents are too large, remote sensing can provide us with the 430 best knowledge at hand. Further research therefore, should be conducted with these 431 tools at broader spatial scales and regional levels in order to advance our understanding 432 of species habitat selection, movement and threats.

433	Predicting species habitats, movements and identifying their threats can greatly
434	aid conservation decisions which are often made with relatively sparse information
435	(Pressey, 2004). While this study examines nesting sea turtles, the same methodology
436	can be applied to other species that are disturbed by artificial night lights. For such
437	species, we propose that satellite night light imagery can be incorporated into
438	conservation planning in order to mitigate the threat of night lights when selecting
439	priority conservation areas or reserves. This approach is especially relevant for rare and
440	endangered species such as sea turtles, for which there is a limited time to act in the face
441	of increasing human-pressures and where action is needed at broad scales.
442	
443	
444	Acknowledgments
445	We would like to thank the Israel Nature and Parks Authority's rangers and the many
446	people who collected data and sent reports on turtle nest site locations over the past two
447	decades. We thank the Society for the Protection of Nature in Israel (SPNI) Open
448	Landscape Institute (OLI) and Israel Ministry of Environmental Protection for
449	providing GIS data. T. M. gratefully acknowledges the financial support of the
450	Australia-Israel Scientific Exchange Foundation.
451	
452	
453	
454	
455	
456	

457 **References**

458	Aubrecht, C., Elvidge, C.D., Ziskin, D., Rodrigues, P., Gil, A., 2010a. Observing stress
459	of artificial night lighting on marine ecosystems – a remote sensing application
460	study. In: Wagner, W., Székely, B. (Eds.), ISPRS TC VII Symposium – 100
461	Years ISPRS. IAPRS, Vienna, pp. 41-46.
462	Aubrecht, C., Jaiteh, M., de Sherbinin, A., 2010b. Global Assessment of Light Pollution
463	Impact on Protected Areas. CIESIN/AIT Working Paper. Palisades, NY, USA:
464	CIESIN and NASA SEDAC, The Earth Institute at Columbia University.
465	Aureggi, M., Rizk, C., Venizelos, L., 2005. Survey on sea turtle nesting activity South
466	Lebanon. MEDASSET and MEDWESTCOAST. < <u>www.medasset.org</u> >
467	[Accessed January 2012].
468	Bird, B., Branch, L., Miller, D., 2004. Effects of Coastal Lighting on Foraging
469	Behaviour of Beach Mice. Conservation Biology. 18, 1435-1439.
470	Bjørnstad, O.N., Falck, W., 2001. Nonparametric spatial covariance functions:
471	estimation and testing. Environmental and Ecological Statistics. 8, 53-70.
472	Booth, G.D., Niccolucci, M.J., Schuster, E.G., 1994. Identifying proxy sets in multiple
473	linear regression: an aid to better coefficient interpretation. Research paper INT-
474	470. United States Department of Agriculture, Forest Service, Ogden.
475	Bourgeois, S., Gilot-Fromont, E., Villefont, A., Boussamba, F., Deem, S., 2009.
476	Influence of artificial lights, logs and erosion on leatherback sea turtle hatchling
477	orientation at Pongara National Park, Gabon. Biological Conservation. 142, 85-
478	93.

479	Bowen, B.W., Kamezaki, N., Limpus, C.J., Hughes, G.R., Meylan, A.B., Avise, J.C.,
480	1994. Global phylogeography of the loggerhead turtle (Caretta caretta) as
481	indicated by mitochrondrial DNA haplotypes. Evolution. 48, 1820-1828.
482	Bradter, U., Thom, T., Altringham, J.D., Kunin, W.E., Benton, T.G., 2011. Prediction of
483	National Vegetation Classification communities in the British uplands using
484	environmental data at multiple spatial scales, aerial images and the classifier
485	random forest. Journal of Applied Ecology. 48, 1057-1065.
486	Brock, K.A., Reece, J.S., Ehrhart, L.M., 2009. The Effects of Artificial Beach
487	Nourishment on Marine Turtles: Differences between Loggerhead and Green
488	Turtles. Restoration Ecology. 17, 297-307.
489	Broderick, A.C., Godley, B.J., 1996. Population and nesting ecology of the green turtle,
490	Chelonia mydas, and the loggerhead turtle, Caretta caretta, in northern Cyprus.
491	Zoology in the Middle East. 13, 27-46.
492	Calase, P., Margaritoulis, D. (Eds.), 2010. Sea turtles in the Mediterranean:
493	Distribution, Threats and conservation priorities. Gland, Switzerland, IUCN.
494	Carr, A.F., 1975. The Ascension Island green turtle colony. Copeia. 1975, 547-555.
495	CBS, 2007. Demographics of Israel, Central Bureau of Statistics Israel 2011.
496	< <u>http://www1.cbs.gov.il/reader/</u> > [Accessed October 2011].
497	Chapin, F.S. III, Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds,
498	H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C., Díaz, S.,
499	2000. Consequences of changing biodiversity. Nature. 405, 234-242.
500	Clark Labs, 2010. IDRISI Taiga 16.05. 950 Main Street, Worcester MA 01610–1477,
501	USA: Clark University.

502	Colomb, F.R., Alonso, C., Hofmann, C., Nollmann, I., 2003. SAC-C mission, an
503	example of international cooperation. Advances in Space Research. 34, 2194-
504	2199.
505	CONAE, 2007. National Space Activities Commission, Satellite – SAC-C, Buenos
506	Aires, Argentine.
507	Crain, C.M., Halpern, B.S., Beck, M.W., Kappel, C.V., 2009. Understanding and
508	Managing Human Threats to the Coastal Marine Environment. Annals of the
509	New York Academy of Sciences. 1162, 39-62.
510	ESRI, 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems
511	Research Institute.
512	Fish, M.R., Cote, I.M., Gill, J.A., Jones, A.P., Renshoff, S., Watkinson, A,R., 2005.
513	Predicting the Impact of Sea-Level Rise on Caribbean Sea Turtle Nesting
514	Habitat. Conservation Biology. 19, 482-491.
515	Garcon, J.S., Grech, A., Moloney, J., Hamann, M., 2009. Relative Exposure Index: an
516	important factor in sea turtle nesting distribution. Aquatic Conservation: Marine
517	and Freshwater Ecosystems. 20, 140-149.
518	Google Earth, 2011. Israel coast line, Data SIO, NOAA U.S Navy NGA, GEBCO.
519	http://www.google.com/earth/index.html [Accessed November 2011].
520	Grigione, M.M., Mrykalo, R., 2004. Effects of artificial night lighting on endangered
521	ocelots and nocturnal prey along the United States-Mexico border: A literature
522	review and hypotheses of potential impacts. Urban Ecosystems. 7, 65-77.
523	Image Science and Analysis Laboratory, 2003. NASA-Johnson Space Centre. The
524	Gateway to Astronaut Photography of Earth.

525	<http: eol.jsc.nasa.gov="" photo.pl?mission="ISS007&roll=E&frame=</th" scripts="" sseop=""></http:>
526	16433>02/05/2012 10:24:31.> [Accessed May 2012].
527	Jung, K., Kalko, E., 2010. Where forest meets urbanization: foraging plasticity of aerial
528	insectivorous bats in an anthropogenically altered environment. Journal of
529	Mammalogy. 91, 144-153.
530	Kaplan, M., Din, H., Bookwald, S., Dabcheri-Darom, L., 2006. Land Use Patterns in
531	the Built-up Areas in 2003 and a Comparative Research 1998-2003. The
532	Jerusalem Institute for Israel Studies and Israel's Ministry of the Environment (in
533	Hebrew).
534	Karavas, N., Georghiou, K., Arianoutsou, M., Dimopoulos, D., 2005. Vegetation and
535	sand characteristics influencing nesting activity of Caretta caretta on Sekania
536	beach. Biological Conservation. 121, 177-188.
537	Kaska, Y., Baskale, E., Urhan, R., Katilmis, Y., Gidis, M., Sari, F., Sozbilen, D.,
538	Canbolat, F., Yilmaz, F., Barlas, M., Ozdemir, N., Ozkul, M., 2003. Natural and
539	anthropogenic factors affecting the nest-site selection of Loggerhead Turtles,
540	Caretta caretta, on Dalaman-Sarigerme beach in South-west Turkey. Zoology in
541	the Middle East. 50, 47-58.
542	Kawamura, G., Naohara, T., Tanaka, Y., Nishi, T., Anraku, K., 2009. Near-ultraviolet
543	radiation guides the emerged hatchlings of loggerhead turtles Caretta caretta
544	(Linnaeus) from a nesting beach to the sea at night. Marine and Freshwater
545	Behaviour and Physiology. 42, 19-30.
546	Kempenaers, B., Borgstrom, P., Loes, P., Schlicht, E., Valcu, M., 2010. Artificial night
547	lighting affects dawn song, extra-pair siring success, and lay date in songbirds.
548	Current Biology. 20, 1735-1739.

549	Kikukawa, A., Kamezaki, N., Hirate, K., Ota, H., 1996. Distribution of nesting sites of
550	sea turtles in Okinawajima and adjacent islands of the central Ryukyus, Japan.
551	Chelonian Conservation and Biology. 2, 99-101.
552	Kikukawa, A., Kamezaki, N., Ota, K., 1999. Factors affecting nesting beach selection
553	by loggerhead turtles (Caretta caretta): a multiple regression approach. Journal
554	of Zoology. 249, 447- 454.
555	Koenker, R., 2007. quantreg: Quantile Regression, R package version 4.06.
556	http://www.r-project.org [Accessed February 2012].
557	Kuller, Z., 1999. Current Status and Conservation of Marine Turtles on the
558	Mediterranean Coast of Israel. Marine Turtle Newsletter. 86, 3-5.
559	Kerr, J., Ostrovsky, M., 2003. From space to species: ecological applications for remote
560	sensing. Trends in Ecology and Evolution. 18, 299-305.
561	Lahoz-Monfort, J., Guillera-Arroita, G., Milner-Gulland, E.J., Young, R.P., Nicholson,
562	E., 2010. Satellite imagery as a single source of predictor variables for habitat
563	suitability modelling: how Landsat can inform the conservation of a critically
564	endangered lemur. Journal of Applied Ecology. 47, 1094-1102.
565	Leighton, P., Horrocks, J., Kramer, D., 2011. Predicting nest survival in sea turtles:
566	when and where are eggs most vulnerable to predation? Animal Conservation.
567	14, 186-195.
568	Levin, N., Duke, Y., 2012. High spatial resolution night-time light images for
569	demographic and socio-economic studies. Remote Sensing of Environment. 119,
570	1-10.

571	Levin, N., Shmida, A., Levanoni, O., Tamari, H., Kark, S., 2007. Predicting mountain
572	plant richness and rarity from space using satellite-derived vegetation indices.
573	Diversity and Distributions. 13, 692-703.
574	Le Vin, D.A., Broderick, A.C., Godley, B.J., 1998. Effects of offshore features on the
575	emergence point of marine turtles in Northern Cyprus. In: Byles, R., Fernandez,
576	Y. (Eds.), Proceedings of the 16th annual symposium on sea turtle biology and
577	conservation. NOAA Technical Memorandum NMFS-SEFSC-412, pp. 91-92.
578	Levy, Y., 2003. Status of Marine Turtles and Conservation efforts along the Israeli
579	Coastline. In: Seminoff, J.A. (Ed.), Proceedings of the Twenty-Second Annual.
580	Symposium on Sea Turtle Biology and Conservation. NOAA Technical
581	Memorandum NMFS-SEFSC-503, pp. 149.
582	Levy, Y., 2011. Summary of recovery activity of sea turtles in Israel 2011. Annual
583	report (in Hebrew). Israel Nature and Parks Authority, Mikhmoret.
584	Lichter, M., Zviely, D., Klein, M., 2010. Morphological patterns of south eastern
585	Mediterranean river mouths: The topographic setting of the beach as a forcing
586	factor. Geomorphology. 123, 1-12.
587	Longcore, T., 2010. Sensory Ecology: Night Lights Alter Reproductive Behaviour of
588	Blue Tits. Current Biology. 20, 893-895.
589	Longcore, T., Rich, C., 2004. Ecological light pollution. Frontiers in Ecology and the
590	Environment. 2, 191-198.
591	Lorne, K., Salmon, K., 2007. Effects of exposure to artificial lighting onorientation of
592	hatchling sea turtles on the beachand in the ocean. Endangered Species
593	Research. 3, 23-30.

594	Margaritoulis, D., 1985. Preliminary observations on the breeding behaviour and
595	ecology of Caretta caretta in Zakynthos, Greece. Biologia Gallo-Hellenica. 10,
596	323–332.
597	Mazaris, A.D., Matsinos, Y.G., Margaritoulis, D., 2006. Nest site selection of
598	loggerhead sea turtles: The case of the island of Zakynthos, W Greece. Journal
599	of Experimental Marine Biology and Ecology. 336, 157-162.
600	McConnell, A., Routledge, R., Connors, B.M., 2010. Effect of artificial light on marine
601	invertebrate and fish abundance in an area of salmon farming. Marine Ecology-
602	Progress Series. 419, 147-156.
603	Mellanby, R.J., Broderick, A.C., Godley, B.J., 1998. Nest site selection in
604	Mediterranean marine turtles at Chelones Bay, Northern Cyprus. Proceedings of
605	the 16th annual symposium on sea turtle biology and conservation (compilers R.
606	Byles & Y. Fernandez). NOAA Technical Memorandum NMFS-SEFSC-412,
607	pp. 103-104.
608	Miller, J.D., Limpus, C.J., Godfrey, M.H., 2003. Nest site selection, oviposition, eggs,
609	development, hatching, and emergence of loggerhead turtles. In: Bolton, A.B.,
610	Witherington, B.E. (Eds.), Loggerhead sea turtles. Smithsonian Institution,
611	Washington, DC, pp. 125-143.
612	Moilanen, A., Possingham, H.P., Polasky, S., 2009. A mathematical classification of
613	conservation prioritization problems. In: Moilanen, A., Wilson, K.A.,
614	Possingham, H.P. (Eds.), Spatial Conservation Prioritisation: Quantitative
615	Methods and Computational Tools. Oxford University Press, Oxford, pp. 28-42.
616	Pressey, R.L., 2004. Conservation Planning and Biodiversity: Assembling the Best Data
617	for the Job. Conservation Biology. 18: 1677-1681.

618	R Development Core Team, 2011. R: Version 2.13.0. A Language and Environment for
619	Statistical Computing. R Foundation for Statistical Computing, Bristol, UK.
620	< <u>http://www.R-project.org</u> > [Accessed January 2012].
621	Rizkalla, C.E., Savage, A., 2011. Impact of Seawalls on Loggerhead Sea Turtle
622	(Caretta caretta) Nesting and Hatching Success. Journal of Coastal Research.
623	27, 166-173.
624	Rocchini, D., Balkenhol, N., Carter, G., Foody, G., Gillespie, T., He, K., Kark, S.,
625	Levin, N., Lucas, K., Luoto, M., Nagendra, H., Oldeland, J., Ricotta, C.,
626	Southworth, J., Neteler, M., 2010. Remotely sensed spectral heterogeneity as a
627	proxy of species diversity: Recent advances and open challenges. Ecological
628	Informatics. 5, 318-329.
629	Salmon, M., Reiners, R., Lavin, C., Wyneken, J., 1995a. Behaviour of loggerhead sea
630	turtles on an urban beach. I. Correlates of Nest Placement. Journal of
631	Herpetology. 29, 560-567.
632	Salmon, M., Tolbert, M., Painter, D.P., Goff, M., Reiners, R., 1995b. Behavior of
633	loggerhead sea turtles on an urban beach. II. Hatchling orientation. Journal of
634	Herpetology. 29, 568-576.
635	Salmon, M., 2003. Artifical night lighting and sea turtles. Biologist. 50, 163-168.
636	Schattner, I., 1967. Geomorphology of the Northern Coast of Israel. Landscape and
637	Processes: Essays in Geomorphology. 49, 2-4.
638	Sen, A., Kim, Y., Caruso, D., Lagerloef, G., Colomb, R., Yueh, S., et al. 2006.
639	Aquarius/-SAC-D Mission Overview. Proceedings of SPIE, 6361, 63610I-
640	63611I.

641	Shi, H., Singh, A., 2003. Status and Interconnections of Selected Environmental Issues
642	in the Global Coastal Zones. A Journal of the Human Environment. 32,145-152.
643	Stancheva, M., 2010. Human-induced impacts along the coastal zone of Bulgaria. a
644	pressure boom versus environment. Bulgarian Academy of Sciences. 63, 137-
645	146.
646	Sutton, P.C., 2003. An empirical environmental Sustainability Index derived solely
647	from nighttime satellite imagery and ecosystem service valuation. Population
648	and Environment. 24, 293-311.
649	Tsoar, H., 2000. Geomorphology and paleogeography of sand dunes that have formed
650	the kurkar ridges in the coastal plain of Israel. Israel Journal of Earth Sciences.
651	49, 189–196.
652	Turner, R., Subak, S., Adger, W., 1996. Pressures, Trends, and Impacts in Coastal
653	Interactions Between Socioeconomic and Natural Systems. Environmental
654	Management. 20, 159-173.
655	Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003.
656	Remote sensing for biodiversity science and conservation. Trends in Ecology
657	and Evolutions. 18, 306-314.
658	Tuxbury, S.M., Salmon, M., 2005. Competitive interactions between artificial lighting
659	and natural cues during seafinding by hatchling marine turtles. Biological
660	Conservation. 121, 311-316.
661	Van Houtan, K., Halley, J., 2011. Long-term climate forcing in loggerhead sea turtle
662	nesting. PloS one. 6, e19043.
663	Watzold, F., Drechsler, M., Armstrong, C., Baumgartner, S., Grimm, V., Huth, A.,
664	Perrings, C., Possingham, H.P., Shogren, J., Skonhoft, A., Verboom-vasiljev, J.,

665	Wissel, C., 2006. Ecological-economic modeling for biodiversity management:
666	Potential, pitfalls, and prospects. Conservation Biology. 20, 1034-1041.
667	Weishampel, J.F., Bagley, D.A., Ehrhart, L.M., Rodenbeck, B.L., 2003. Spatiotemporal
668	patterns of annual sea turtle nesting behaviours along an East Central Florida
669	beach. Biological Conservation. 110, 295-303.
670	Weishampel, J., Bagley, D.A., Ehrhart, L.M., 2006. Intra-annual Loggerhead and Green
671	Turtle spatial nesting patterns. Southeastern Naturalist. 5, 453-462.
672	Witherington, B., 1992. Behavioral-responses of nesting sea-turtles to artificial lighting.
673	Herpetologica. 48, 31-39.
674	Witherington, B.E., Bjorndal, K.A., 1991. Influences of artificial lighting on the
675	seaward orientation of hatchling loggerhead turtles Caretta caretta. Biological
676	Conservation. 55, 139-149.
677	Witherington, B.E., Martin, E.R., 2000. Understanding, Assessing and resolving light-
678	pollution problems on sea turtle nesting beaches (Technical Report, TR-2).
679	Florida Marine Research Institute, St. Petersburg, Florida.
680	Wood, D.W., Bjorndal, K,A., 2000. Relation of temperature, moisture, salinity, and
681	slope to nest site selection in Loggerhead Sea Turtles. Copeia, 1, 119-128.
682	Zilberman, E., Ilani, S., Netzer-Cohen, H., Kalbo, R., 2006. Geomorphologic -
683	lithologic mapping along the coastal plain of Israel (in Hebrew). Geological
684	Institute of the Minister of Energy and Infrastructure Israel, Jerusalem.
685	Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing Ecological Data. Springer, New
686	York.
687	Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009, Mixed Effects
688	Models and Extensions in Ecology with R. Springer, New York.

Tables

Table 1. Table displaying twenty-one variables used in this study (in GLM). Four anthropogenic based and seventeen environmental

variables were used that were suspected to be related to turtle nesting patterns (* = categorical variable)

Threat Data origin										
Anthropogenic based										
Human population density	Population density data was obtained as of 2007 for statistical units as defined by Israel Central Bureau of Statistics (CBS, 2007). As a proxy for estimating the population residing near the beach, each spatial unit was given the population density of the closest municipality division alongside the coast.									
Built-up areas (m) Data for built up areas was available from the Israeli Ministry for Environmental Protection (Kaplan et al, each spatial unit (CBS, 2007). Built-up areas were calculated by the distance from the coastline (middle o the closest built up area (m).										
Infrastructure (m)To determine the land-use type of the beach we used GIS data supplied by the Society for the ProtecIsrael (SPNI) Open Landscape Institute (OLI). The distance (m) from the center of each spatial unit national infrastructure (e.g. ports, roads, electrical grids, military areas) was measured.										
Reserves	The current areas protected within nature reserves and national parks of Israel were provided by Israel's Nature and Parks Authority. The percentage of each rectangular unit that is protected by a reserve which is either officially declared or approved was calculated using ArcGIS (ESRI, 2011). Reserves that are currently awaiting approval or recently proposed were not taken into consideration.									
Environmental varia	bles									
Beach area	We digitized the area of beach (sand area) from Google Earth (2011) satellite imagery, performed at the rectangular unit scale (500m) in ArcGIS (ESRI, 2011). We calculated the percentage of the spatial unit's area which was covered by beach.									
Cliffs *	We included the presence and absence of cliffs bordering the shoreline of beaches as a categorical variable (1=cliffs, 0=no cliff). This data was provided by the Society for the Protection of Nature in Israel (SPNI) Open Landscape Institute (OLI).									

Geomorphologic	We used GIS data from a Geological Survey of Israel for the Ministry of Environment (Zilberman et al., 2006). Fifteen
features	geomorphologic classes (Table A3) were considered in our analysis. We calculated the percentage of each
	geomorphologic feature within every rectangular unit.

Table 2. Spearman rank correlation coefficient of night lights (pixel values) from twosatellite images with sea turtle nest persistence and the total number of sea turtle nests(summed over 19 year period within 336 spatial units) along the coast of Israel .

	Total number of sea to	urtle nests	Sea turtle nest persistence				
Satellite night light image	Spearman's rank correlation coefficient	р	Spearman's rank correlation coefficient	р			
SAC-C (Entire Israel Mediterranean coast)	-0.31	4.07e-09	-0.34	8.12e-11			
ISS (Partial coast)	-0.37	7.71e-11	-0.39	6.44e-12			
SAC-C (Partial coast as used in ISS image)	-0.35	1.11e-09	-0.38	3.20e-11			

Table 3. Minimum adequate quasi-Poisson GLM to explain sea turtle nest persistence and the total number of sea turtle nests (between 1993-2011) within spatial units along the entire coastline of Israel. See Table 1 for details regarding explanatory variables. Interactions between explanatory variables are marked with a cross. Rows with no values signify explanatory variables that were eliminated within the modelling process and did not contribute to the final model.

	Total number of nests						Nest persistence							
Explanatory variable	Coefficient	SE	t	р	df	F	р	Coefficient	SE	t	р	df	F	р
Night lights (SAC-C image) – negative exponential	3.34e+10	1.79e+10	1.87	0.06	1	7.60	0.01 **	6.39e+10	9.60e+09	6.66	1.18e-10 ***			
Cliffs	8.16e-01	2.30e-01	3.54	4.56e- 04***	1	26.22	5.19e-07 ***	1.09e+00	1.67e-01	6.52	2.64e-10 ***			
Infrastructure	-2.44e-04	1.31e-04	-1.87	0.06				-3.88e-04	9.03e-05	-4.30	2.30e-05 ***			
Human population density	-4.06e-05	3.63e-05	-1.12	0.26				-9.10e-05	3.70e-05	-2.46	0.01 *			
Beach area								1.70e-02	7.81e-03	2.17	0.03 *			
Beach area x Human population density								1.62e-05	7.57e-06	2.14	0.03*	1	4.91	0.03 *
Night lights (neg exp) x Cliffs								-5.73e+10	2.85e+10	-2.01	0.04 *	1	4.62	0.03 *
Human population density x Infrastructure	-5.47e-07	4.96e-07	-1.10	0.27	1	10.22	1.53e-03 **	-2.80e-07	1.81e-07	-1.54	0.12	1	5.57	0.02 *
Red sandy clay loam (Geo_2)	-1.8e-02	1.28e-02	-1.46	0.15	1	5.63	0.02 *							

Statistical Significance: * - 0.05, ** - 0.01, *** 0.001

Figure Legend

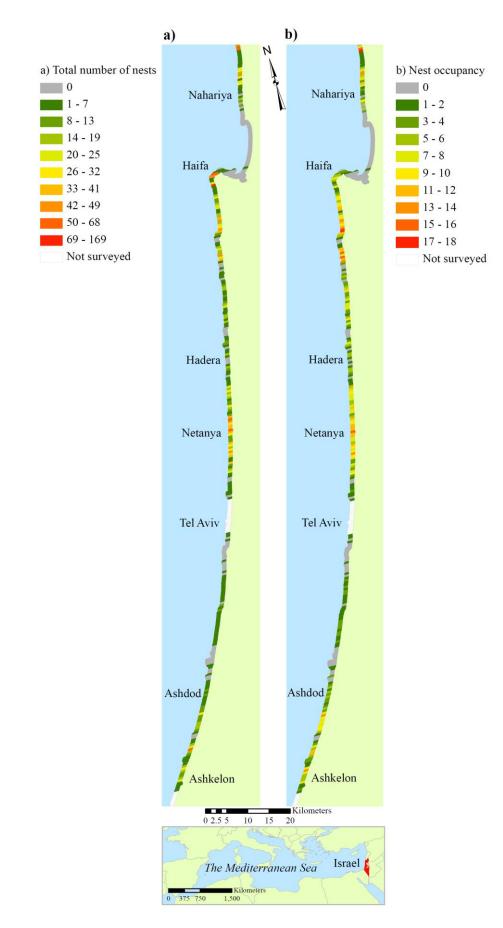

Figure 1. Map showing the study area along the Mediterranean coast of Israel, using the Israel Transverse Mercator Grid. **a**) Total number of sea turtle nests summed from 1993-2011 within each spatial unit (1 x 0.5 km) along the coast of Israel; **b**) Sea turtle nest occupancy (presence/absence) was summed from 1993-2011 within each spatial unit. Israel's location within the Mediterranean basin is displayed at the bottom. The map was created with ESRI (2011) ArcGIS, Coastline: Survey of Israel, Turtle data: Israel Nature and Parks Authority.

Figure 2. The satellite images used in this study for calculating night lights along the coast of Israel. Major cities are displayed. **a**) SAC-C satellite from Argentine's Space Agency (CONAE, 2007), pixel resolution is 300 m **b**) Image from International Space Station astronaut photography, pixel resolution is 60 m (Image Science and Analysis Laboratory, 2003). The map was created with ESRI (2011) ArcGIS.

Figure 3. Scatter plot using spatial units $(1 \times 0.5 \text{ km})$ along the coast of Israel to show relationships between sea turtle nesting activity over a 19 year period (1993-2011) and night light intensity derived from a satellite image (SAC-C; CONAE, 2007). One outlier was removed from the plot for visualization purposes. **a**) Total number of sea turtle nests summed per spatial unit $(1 \times 0.5 \text{ km})$ **b**) Sea turtle nesting persistence (presence/absences) summed over time period for each spatial unit.

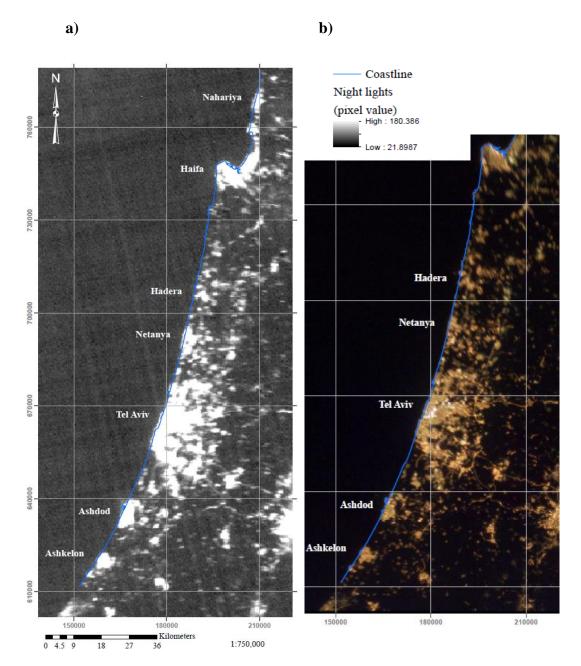

Figure 4. Box plots of Kruskal-Wallis one-way analysis of variance of three groups of night light intensity; high (well lit areas), moderate, and low (dark areas) related to the total number of sea turtle nests occupancy (summed for years 1993-2011) along the coast of Israel. Pixel values of the three groups are in bracket. One outlier was removed from the plot for visualization purposes. a) SAC-C satellite image (CONAE, 2007), b) ISS satellite image (Image Science and Analysis Laboratory, 2003).

Figure 5. Box plots of Kruskal-Wallis one-way analysis of variance of three groups of night light intensity; High (well lit areas), Moderate, and Low (dark areas) related to sea turtle nest occupancy (presences/absence) frequency (summed for the years 1993-2011) along the coast of Israel. Pixel values of the three groups are in brackets. One outlier was removed from the plot for visualization purposes. **a**) SAC-C satellite image (CONAE, 2007), **b**) ISS satellite image (Image Science and Analysis Laboratory, 2003).

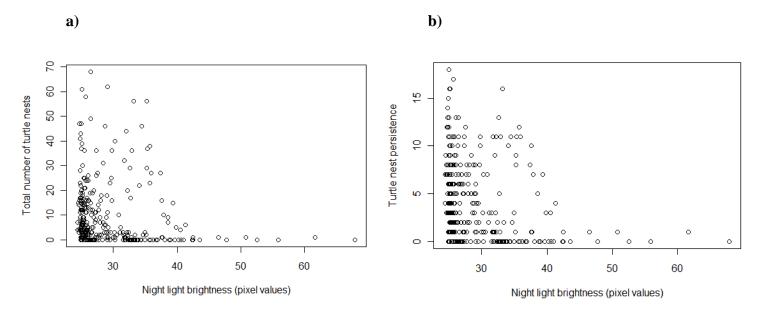
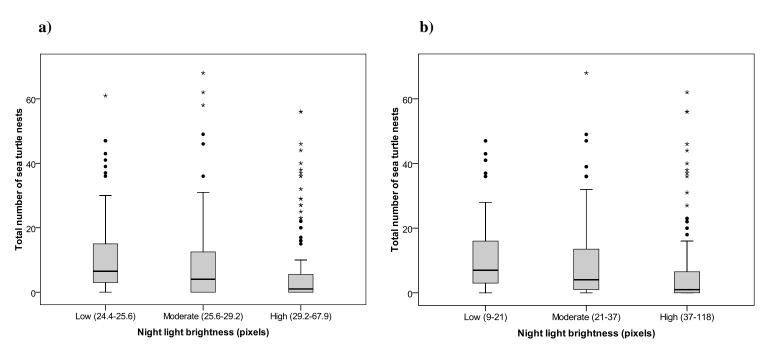


Figure 1.


Figure 2.

