31 research outputs found

    Antihypertensive Properties of Plant-Based Prebiotics

    Get PDF
    Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised

    Mineral supplementation of white wheat flour is necessary to maintain adequate mineral status and bone characteristics in rats

    No full text
    International audienceThis experiment was designed to compare the effect of ingestion of a wheat flours on mineral status and bone characteristics in rats. White flour was tested either without further mineral supplementation or with Mg, Fe, Zn and Cu supplementation. The flour diets were compared to a control purified diet. Four groups of 10 male Wistar rats each were fed one of the experimental diets for 6 wk and mineral status and tissue retention as well as bone characteristics were determined. As expected, mineral intake, except for calcium, was significantly lesser in rats fed the white flour diet than in the other groups. The rats fed the white flour diet had the lowest food intake, weight gain, fecal excretion and intestinal fermentation. The most important result was that Mg and Fe status were drastically lower in rats fed the white flour diet than in those fed whole flour or control diets. The status of these both elements were significantly improved by the mineral supplementation of white flour. There were no major significant differences between mineral-supplemented white flour and whole flour groups in mineral status. Furthermore, bone mineral densities (total, metaphyseal and diphyseal) were significantly lower in rats fed white flour diet compared to the other diet groups, while no significant difference was observed between the mineral-supplemented white flour, whole flour or control diet groups. In conclusion, the present work shows clearly the importance of mineral-supplementation of white wheat flour to sustain an adequate intake of minerals. Our results indicate also that the whole wheat flour did not negatively alter mineral bioavailability, in comparison to mineral supplemented white flour. Clinical studies are still needed to confirm these rat results in human
    corecore