158 research outputs found

    Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests

    Get PDF
    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs

    Environmental DNA for the enumeration and management of Pacific salmon

    Get PDF
    Pacific salmon are a keystone resource in Alaska, generating annual revenues of well over ~US$500 million/yr. Due to their anadromous life history, adult spawners distribute amongst thousands of streams, posing a huge management challenge. Currently, spawners are enumerated at just a few streams because of reliance on human counters and, rarely, sonar. The ability to detect organisms by shed tissue (environmental DNA, eDNA) promises a more efficient counting method. However, although eDNA correlates generally with local fish abundances, we do not know if eDNA can accurately enumerate salmon. Here we show that daily, and near‐daily, flow‐corrected eDNA rate closely tracks daily numbers of returning sockeye and coho spawners and outmigrating sockeye smolts. eDNA thus promises accurate and efficient enumeration, but to deliver the most robust numbers will need higher‐resolution stream‐flow data, at‐least‐daily sampling, and a focus on species with simple life histories, since shedding rate varies amongst jacks, juveniles, and adults

    Intrapopulation Diversity in Isotopic Niche Over Landscapes: Spatial Patterns Inform Conservation of Bear–Salmon Systems

    Get PDF
    Intrapopulation variability in resource acquisition (i.e., niche variation) influences population dynamics, with important implications for conservation planning. Spatial analyses of niche variation within and among populations can provide relevant information about ecological associations and their subsequent management. We used stable isotope analysis and kernel-weighted regression to examine spatial patterns in a keystone consumer–resource interaction: salmon (Oncorhynchus spp.) consumption by grizzly and black bears (Ursus arctos horribilis, n = 886; and Ursus americanus, n = 557) from 1995 to 2014 in British Columbia (BC), Canada. In a region on the central coast of BC (22,000 km2 ), grizzly bears consumed far more salmon than black bears (median proportion of salmon in assimilated diet of 0.62 and 0.06, respectively). Males of both species consumed more salmon than females (median proportions of 0.63 and 0.57 for grizzly bears and 0.06 and 0.03 for black bears, respectively). Black bears showed considerably more spatial variation in salmon consumption than grizzlies. Protected areas on the coast captured no more habitat for bears with high-salmon diets (i.e., proportions \u3e0.5 of total diet) than did unprotected areas. In a continental region (~692,000 km2 ), which included the entire contemporary range of grizzlies in BC, males had higher salmon diets than females (median proportions of 0.41 and 0.04, respectively). High-salmon diets were concentrated in coastal areas for female grizzly bears, whereas males with high-salmon diets in interior areas were restricted to areas near major salmon watersheds. To safeguard this predator–prey association that spans coastal and interior regions, conservation planners and practitioners can consider managing across ecological and jurisdictional boundaries. More broadly, our approach highlights the importance of visualizing spatial patterns of dietary niche variation within populations to characterize ecological associations and inform management

    Environmental DNA facilitates accurate, inexpensive, and multi‐year population estimates of millions of anadromous fish

    Get PDF
    Although environmental DNA shed from an organism is now widely used for species detection in a wide variety of contexts, mobilizing environmental DNA for management requires estimation of population size and trends in addition to assessing presence or absence. However, the efficacy of environmental‐DNA‐based indices of abundance for long‐term population monitoring have not yet been assessed. Here we report on the relationship between six years of mark‐recapture population estimates for eulachon (Thaleichthys pacificus) and ‘eDNA rates,’ which are calculated from the product of stream flow and DNA concentration. Eulachon are a culturally and biologically important anadromous fish that have significantly declined in the southern part of their range but were historically rendered into oil and traded. Both the peak eDNA rate and the area under the curve of the daily eDNA rate were highly predictive of the mark‐recapture population estimate, explaining 84.96% and 92.53% of the deviance respectively. Even in the absence of flow correction, the peak of the daily eDNA concentration explained an astonishing 89.53% while the area under the curve explained 90.74% of the deviance. These results support the use of eDNA to monitor eulachon population trends and represent a > 80% cost savings over mark‐recapture, which could be further increased with automated water sampling, reduced replication, and focused temporal sampling. Due to its logistical ease and affordability, eDNA sampling can facilitate monitoring a larger number of rivers and in remote locations where mark‐recapture is infeasible

    Visual encounters on line transect surveys under-detect carnivore species: Implications for assessing distribution and conservation status

    Get PDF
    We compared the distribution and occurrence of 15 carnivore species with data collected monthly over three years by trained native trackers using both sign surveys and an encounter-based, visual-distance method in a well-preserved region of southern Guyana (Amazon / Guiana Shield). We found that a rigorously applied sign-based method was sufficient to describe the status of most carnivore species populations, including rare species such as jaguar and bush dog. We also found that even when accumulation curves for direct visual encounter data reached an asymptote, customarily an indication that sufficient sampling has occurred to describe populations, animal occurrence and distribution were grossly underestimated relative to the results of sign data. While other researchers have also found that sign are better than encounters or camera traps for large felids, our results are important in documenting the failure of even intensive levels of effort to raise encounter rates sufficiently to enable statistical analysis, and in describing the relationship between encounter and sign data for an entire community of carnivores including felids, canids, procyonids, and mustelids. © Copyright: © 2019 Fragoso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Bushmeat hunting and extinction risk to the world's mammals

    Get PDF
    Terrestrial mammals are experiencing a massive collapse in their population sizes and geographical ranges around the world, but many of the drivers, patterns and consequences of this decline remain poorly understood. Here we provide an analysis showing that bushmeat hunting for mostly food and medicinal products is driving a global crisis whereby 301 terrestrial mammal species are threatened with extinction. Nearly all of these threatened species occur in developing countries where major coexisting threats include deforestation, agricultural expansion, human encroachment and competition with livestock. The unrelenting decline of mammals suggests many vital ecological and socio-economic services that these species provide will be lost, potentially changing ecosystems irrevocably. We discuss options and current obstacles to achieving effective conservation, alongside consequences of failure to stem such anthropogenic mammalian extirpation. We propose a multi-pronged conservation strategy to help save threatened mammals from immediate extinction and avoid a collapse of food security for hundreds of millions of people
    corecore