382 research outputs found

    Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins.

    Get PDF
    Human ferritin, a multimeric iron storage protein, is composed by various proportions of two subunit types: the H- and L-chains. The biological functions of these two genic products have not been clarified, although differences in reactivity with iron have been shown. Starting from the hypothesis that the high stability typical of ferritin is an important property which may be relevant for its iron storage function, we studied ferritin homopolymers of H- and L-chains in different denaturing conditions. In addition we analyzed 13 H-chain variants with alterations in regions conserved within mammalian H-chains. In all the denaturation experiments H-chain ferritin showed lower stability than L-chain ferritin. The difference was greater in guanidine HCl denaturation experiments, where the end products are fully unfolded peptides, than in acidic denaturation experiments, where the end products are peptides with properties analogous to "molten globule." The study on H-chain variants showed: (i) ferritin stability was not affected by alterations of regions exposed to the inner or outer surface of the shell and not involved in intra- or inter-chain interactions; (ii) stability was reduced by alterations of sequences involved in inter-subunit interactions such as the deletion of the N-terminal extension or substitutions along the hydrophobic and hydrophilic channels; (iii) stability was increased by the substitution of 2 amino acids inside the four-helix bundle with those of the homologous L-chain. One of the residues is involved in a salt bridge in the L-chain, and we concluded that the stability difference between H- and L-ferritins is to a large extent due to the stabilizing effect of this salt bridge on the L-subunit fold

    A Translation of the T. Levi-Civita paper: Interpretazione Gruppale degli Integrali di un Sistema Canonico Rend. Acc. Lincei, s. 3^a, vol. VII, 2^o sem. 1899, pp. 235--238

    Full text link
    In this paper we provide a translation of a paper by T. Levi-Civita, published in 1899, about the correspondence between symmetries and conservation laws for Hamilton's equations. We discuss the results of this paper and their relationship with the more general classical results by E. Noether.Comment: 12 page

    Mining metrics for buried treasure

    Full text link
    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.Comment: 16 pages, no figures, minor grammatical changes, submitted to Proceedings of the Malcolm@60 Conference (London, July 2004

    The Dynamical Behaviour of Test Particles in a Quasi-Spherical Spacetime and the Physical Meaning of Superenergy

    Full text link
    We calculate the instantaneous proper radial acceleration of test particles (as measured by a locally defined Lorentzian observer) in a Weyl spacetime, close to the horizon. As expected from the Israel theorem, there appear some bifurcations with respect to the spherically symmetric case (Schwarzschild), which are explained in terms of the behaviour of the superenergy, bringing out the physical relevance of this quantity in the study of general relativistic systems.Comment: 14 pages, Latex. 4 figures. New references added. Typos corrected. To appear in Int. J. Theor. Phy

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces

    Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for <i>Elovl2</i> in glucose-induced insulin secretion.

    Get PDF
    In type 2 diabetes (T2D), pancreatic β cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under metabolic stress. Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis. A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and oral glucose tolerance phenotypes. One of the predicted network hub genes was &lt;i&gt;Elovl2&lt;/i&gt; , encoding Elongase of very long chain fatty acids 2. &lt;i&gt;Elovl2&lt;/i&gt; silencing decreased glucose-stimulated insulin secretion in mouse and human β cell lines. Our results suggest a role for &lt;i&gt;Elovl2&lt;/i&gt; in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of β cell failure under metabolic stress

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Photonic band gaps in materials with triply periodic surfaces and related tubular structures

    Full text link
    We calculate the photonic band gap of triply periodic bicontinuous cubic structures and of tubular structures constructed from the skeletal graphs of triply periodic minimal surfaces. The effect of the symmetry and topology of the periodic dielectric structures on the existence and the characteristics of the gaps is discussed. We find that the C(I2-Y**) structure with Ia3d symmetry, a symmetry which is often seen in experimentally realized bicontinuous structures, has a photonic band gap with interesting characteristics. For a dielectric contrast of 11.9 the largest gap is approximately 20% for a volume fraction of the high dielectric material of 25%. The midgap frequency is a factor of 1.5 higher than the one for the (tubular) D and G structures

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
    corecore