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Molecular phenotyping of multiple mouse strains
under metabolic challenge uncovers a role for
Elovl2 in glucose-induced insulin secretion
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ABSTRACT

Objective: In type 2 diabetes (T2D), pancreatic b cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In
this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under
metabolic stress.
Methods: Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic
islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression.
RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis.
Results: A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and
oral glucose tolerance phenotypes. One of the predicted network hub genes was Elovl2, encoding Elongase of very long chain fatty acids 2. Elovl2
silencing decreased glucose-stimulated insulin secretion in mouse and human b cell lines.
Conclusion: Our results suggest a role for Elovl2 in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive
dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of b cell failure under metabolic
stress.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

An absolute or relative decrease in insulin secretion by pancreatic b-
cells underlies the development of type 1 and type 2 diabetes,
respectively. These diseases impose a huge burden on welfare sys-
tems in both developed and developing countries, affecting w8% of
the adult population and consuming $160 billion (USD) per annum
(International Diabetes Federation, 2015). In particular, a sedentary
lifestyle and consumption of highly calorific diets with a substantial fat
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content play a central role in inducing insulin resistance and type 2
diabetes. The latter develops when insulin secretion by the b-cell
becomes insufficient to overcome insulin resistance [1,2]. Our
incomplete knowledge of b-cell biology in health and disease [3]
means that only limited therapeutic options presently exist to treat
diabetes, and there are none to prevent or cure the disease.
Many recent studies have evaluated the role of specific mechanisms
such as the action of reactive oxygen or nitrogen species, endoplasmic
reticulum (ER) stress, sphingolipid metabolism, or autophagy in b-cell
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failure [4e6]. Although these mechanisms represent normal physio-
logical responses to environmental challenges, if unchecked, they may
ultimately lead to cellular dysfunction, de-differentiation [7,8], or even
death [9], particularly when the intensity of the original stimulus ex-
ceeds a given threshold and is long-lasting. Importantly, besides the
nature of the triggering signal, genetic architecture also dictates
cellular sensitivity to these signals. Thus, in man, more than 90 genetic
loci are implicated in type 2 diabetes risk, most of these affecting b-
cell function [10]. Likewise, C57Bl/6J mice display a defective insulin
secretory response to glucose compared to C57Bl/6N mice [11], a
difference due to a single mutation in the Nnt gene [12] that alters the
susceptibility to develop glucose intolerance and b-cell dysfunction
[11]. Dissection of how specific signals lead to different b-cell re-
sponses depending on genetic background is thus a critical goal of b-
cell research.
Approaches to examining how b-cells respond to pro-diabetic chal-
lenges including the fatty acid palmitate have previously used clonal b-
cells and human islets and involved transcriptomic analyses by
microarray or massive parallel sequencing (RNAseq) [13e16]. One of
the limitations of these earlier studies is the use of in vitro models in
which the harmful effects of lipids on b cells are often exaggerated
compared to those in vivo. However, in an attempt to overcome this
problem, a few studies have been performed using mice fed high fat
(HF) diets [17e20]. Under these conditions, mice usually show sig-
nificant increases in body weight, as well as increased blood glucose
and insulin levels, during the first weeks of exposure to the modified
diet. High fat-high sucrose (HFHS) diet-fed mice become severely
glucose intolerant and insulin resistance progressively worsens with
time [18]. However, the development and severity of the diabetic
phenotype depends on several factors, including the choice of genetic
background. In addition, the composition of the diets administered, the
housing conditions, and the experimental setup for mouse phenotyping
and downstream analysis all have an impact on disease severity.
The C57Bl/6J line is established as the strain of choice for the HFHS
diet model of diabetes as treated mice develop a more severe diabetic
phenotype in response to the diet compared to other strains [18,21].
This has led to the notion of “resistant” and “susceptible” strains,
where the genetic differences in metabolic response are more
important for the development of obesity and diabetes than the
increased calorific intake itself [21,22]. Although several previous
studies have compared the glycemic and insulinogenic response of
different strains on a high fat or a regular diet [23e28], a systematic
evaluation combining phenotypic with islet genomic data is lacking.
However, such an analysis could, at least in theory, help to identify new
targets associated with b-cell dysfunction induced by metabolic stress
in an unbiased manner.
Here, we analyzed in parallel the effect of a HFHS diet on six commonly
used laboratory mouse strains using carefully controlled housing and
experimental conditions. The strains were chosen as they are amongst
those most frequently used in metabolic studies and show marked
differences in susceptibility to diet-induced obesity and b-failure [25e
27,29e31]. Mice from these six strains were phenotyped in depth for
glucose homeostasis, insulin resistance, and islet morphometry after
2, 10, 30, or 90 days of HFHS versus regular chow (RC) diet. This was
complemented by deep sequencing of mouse islet mRNA under the
same conditions and at the same time-points. After initial evaluation
and comparison of the degree of diet-induced dysglycemia in the
different strains, we integrated the phenotype measurements with islet
gene expression data in a network-based analysis. This multi-
parameter systems-based approach led to the identification of a
sub-network of islet-expressed genes associated with glucose
MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier GmbH. This is an
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tolerance and insulin secretory capacity. Using this approach, we
provide evidence that Elongase of very long-chain fatty acids 2 (Elovl2),
an enzyme involved in very long chain fatty acid synthesis and high-
lighted by our network analysis, is a key player in regulating glucose-
stimulated insulin secretion in the context of b-cell dysfunction.

2. MATERIAL AND METHODS

The experimental protocol was approved by the institutional animal
care and use committee of the Paris Diderot University (CEEA40).

2.1. Mouse phenotyping
Eight-week old male mice from six different strains: C57Bl/6J, DBA/2J,
A/J, AKR/J, 129S2/SvPas, and BALB/cJ were housed on a 12-h light/
dark cycle and were fed a standard rodent chow (RC) diet (SAFE A04)
or high-fat high-sucrose (HFHS) diet (SAFE 235F, with 46% fat
expressed in Kcal/kg), ad libitum. Islets were isolated and mice were
phenotyped at 2, 10, 30, and 90 days of HFHS or RC diet. Protocols for
islet isolation and phenotyping are described in Supplementary
Methods.

2.2. In vitro insulin secretion measurements
MIN6 cells were seeded in 96-well plates and treated for 24 h in the
presence of various glucose concentrations. Cells were then pre-
incubated in KRBH containing 0.2% fatty-acid free BSA and 2 mM
glucose for 30 min. Insulin secretion was measured following a 30 min
incubation in KRBH containing 0.2% defatted BSA with 2 mM glucose
or 20 mM glucose. The insulin concentration in the medium was
determined by Ultra Sensitive Mouse Insulin ELISA kit (Alpco, Salem,
USA).
Beta TC-tet cells were washed with PBS and pre-incubated for 2 h in
KRBH-BSA (supplemented with 2 mM glucose), then the medium was
replaced with fresh KRBH-BSA containing 2 mM glucose or 20 mM
glucose þ 100 nM Exendin-4 and incubated for 1 h. Secreted and
cellular insulin were assessed by radioimmunoassay (RIA) using RIA kit
(Millipore, MA, USA) following manufacturer’s instructions.
Five days after transfection, EndoC-bH1 cells were starved in 0.5 mM
glucose DMEM-based medium. After 24 h starvation, cells were
washed twice and then pre-incubated in KRBH containing 0.2% fatty-
acid free BSA and 0 mM glucose for 1 h. Insulin secretion was
measured following 40 min incubation with KRBH containing 0.2%
fatty-acid free BSA and 0 mM or 20 mM glucose. Insulin secretion and
intracellular insulin were measured by ELISA as previously described
[32].

2.3. Quantitative PCR
Real-time qPCR was performed on total 4 mg RNA isolated from mouse
islets using a LightCycler 1.5 detection system (Roche). The house-
keeping gene Rpl19 was used to normalize the results. Data are
expressed as means � S.E.M. and significance was assessed by the
Student’s t test.

2.4. RNA-Seq and downstream bioinformatics analysis
RNA-Seq analysis was performed on RNA isolated from at least 150
islets per mouse, libraries were prepared using Illumina TruSeq pro-
tocol and sequencing performed on a HiSeq2000 instrument (50-
cycles). 50 nt reads were processed from 341 samples, mapped to
mm9 reference genome and summary counts produced per gene.
Gene counts were normalized using the trimmed mean method
(EdgeR) and differential expression analysis performed using limma
(voom method), correcting p-values for multiple testing using the
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ 341
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Benjamini Hochberg method [33]. Weighted gene co-expression
network analysis (WGCNA) [34] was performed on normalized RNA-
Seq data and gene expression modules to phenotypic trait correla-
tions were calculated using the Spearman method. Gene set enrich-
ment analysis (GSEA) was performed for gene co-expression modules
against canonical pathways and gene ontology categories in MSigDB.
A global network was created with genes, gene co-expression mod-
ules, phenotypic traits, and pathways/GO categories represented as
nodes and the relationships between them represented as edges.
Network visualization was performed using Gephi 0.8.2. For further
details see Supplementary Methods.

2.5. Cell transfection of siRNA
MIN6 and Beta TC-tet cells were transfected by diluting 150 nM Stealth
RNAi� siRNA specific for mouse Elovl2 (Invitrogen #MSS285122) or
Stealth RNAi� siRNA Negative Control siRNA duplex (medium GC
content, from Stealth RNAi� siRNA Negative Control Kit, Invitrogen
#12935100) in 200 ml serum free medium in a 12 well tissue culture
plate. The medium GC content negative siRNA control was used since
the GC content of the Elovl2 siRNA is 45%. 3 ml of Lipofectamin
RNAiMax (Invitrogen, Zug, Switzerland) was then added and incubated
at room temperature for 20 min to form Lipid-siRNA complexes. The
transfected cells were incubated at 37 �C in a CO2 and were used for
the experiments, 72 h after transfection. Initially, 3 Stealth RNAi�
siRNAs specific for mouse Elovl2 were tested for efficiency of Elovl2
knock down by qPCR. The siRNA corresponding to the most 50 location
in mouse Elovl2 mRNA (NCBI Refseq NM_019423.2) and targeting
exon 5 of the Elovl2 gene showed the strongest diminution of transcript
(approximately 50%, data not shown) and was selected for the insulin
secretion experiment. For EndoC-bH1 cells, 80 nM of Non-Targeting
siRNA control pool (Dharmacon #D-001206-13) or ELOVL2 ON-
TARGETplus smart pool siRNA (Dharmacon #M-009531-01) contain-
ing a pool of 4 ELOVL2 specific siRNAs were transfected using Lip-
ofectamine RNAiMax (Lifetechnologies).

3. RESULTS

3.1. Different mouse strains show distinct susceptibilities to
developing a HFHS-induced metabolic phenotype
Male mice from six genetically different mouse strains (C57Bl/6J, DBA/
2J, 129S2/SvPas, AKR/J, A/J, and BALB/cJ) were fed a HFHS or RC
diet for 2, 10, 30, or 90 days, after which time various phenotypic and
molecular measurements were performed. Glucose tolerance (AUC
glycemia) and insulin secretion were measured by performing oral
glucose tolerance tests (OGTT). Fasting glycemia, mouse weight, and
pancreas weight were also recorded. In addition, quantitative histology
was performed on pancreatic sections and used to estimate per-
centage of b and a cell mass (see Supplementary Methods for details).
At each time-point, pancreatic islets were isolated and mRNA extracted
for RNA-Seq. The experiments were designed to ensure that there
were at least six biological replicates for each strain/time-point/diet
combination.
Over the three-month period, the mouse strains showed markedly
different responses to HFHS diet. DBA/2J mice were characterized by
severe weight gain on HFHS-diet when compared to RC-fed controls
(Figure 1A) and this was accompanied by a gradual decrease in
glucose tolerance (Figure 1B). In contrast, AKR/J mice showed a
transient decrease in glucose tolerance up to day 30, which then
started to normalize at day 90. This change was accompanied by a
gradual increase in body weight in the HFHS-diet fed mice compared to
controls. This was similar for 129S2/SvPas and A/J mice, both of
342 MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier
which showed a gradual increase in body weight accompanied by a
decrease in glucose tolerance. In contrast, C57Bl/6J mice showed later
onset of glucose intolerance starting at day 30, associated with a
moderate weight gain, whereas BALB/cJ mice showed massively
decreased glucose tolerance at early time-points but showed no dif-
ference in body weight gain between HFHS diet and RC-fed mice.
Plasma insulin levels (insulinemia), both basal and glucose-stimulated,
were dramatically increased in DBA/2J mice on HFHS diet
(Figure 1C,D), and this was accompanied by a non-significant ten-
dency towards an increase in b-cell to a cell ratio (Supplementary
Figure S1D). No clear differences in b to a cell ratio were observed
for the other strains on HFHS versus RC diet, except for AKR/J mice, in
which a small but significant increase was observed in HFHS-diet fed
mice at day 90.
Interestingly, DBA/2J was the only strain displaying a clear diabetic
phenotype from the outset, with significantly higher fasting glycemia in
HFHS fed mice at all time-points (Supplementary Figure 1A). These
data indicate that DBA/2J and BALB/cJ are the most severely glucose
intolerant (with a marked difference in insulin secretion), and along
with C57Bl/6J, these three strains appear to show a progressive
worsening of disease with time. Of note, whereas DBA/2J and, to a
lesser extent, C57Bl/6J mice showed weight gain on HFHS diet, BALB/
cJ mice experienced no such weight gain, and indeed weight loss at
day 10. In contrast, AKR/J, 129S2/SvPas, and A/J mice show more
transient glucose intolerance, which started to improve at three
months, indicating that these strains are better able to adapt to
metabolic stress. Scatter plots showing the correlations between the
phenotypes shown in Figure 1 are provided as Supplementary
Figure S2. A table of corresponding Pearson correlation coefficients
and associated p-values is provided in Supplementary Table S1.
The mouse strains also showed differential adaptation to HFHS-diet in
terms of insulin secretory response to oral glucose. In order to measure
the degree of compensatory response to HFHS diet, we calculated an
insulinogenic index (AUC insulin/AUC glycemia during OGTT) for each
time-point and rank ordered the strains according to the difference in
insulinogenic index between HFHS-diet fed and RC-diet averaged over
all time-points (Table 1). Overall, DBA/2J mice show the largest insulin
adaptation response to HFHS-diet, followed by AKR/J and C57Bl/6J,
with 129S2/SvPas, BALB/cJ, and A/J showing the lowest adaptation.

3.2. Islet transcript levels are strongly influenced by strain
Sample similarity was calculated as previously described [35] using
normalized islet transcriptomic data from 338 RNA-Seq samples. The
resulting heatmap shows a clear separation of the mouse samples into
six clusters (Figure 2A). These sample clusters closely correspond to
the different strains used in the study, but the samples do not separate
according to type of diet or length of time on the diet, even within the
same strain. This indicates that the transcriptional profiles of islets are
more closely related to genetic legacy than to environmental factors
such as diet.

3.3. Several islet pathways are modified at the transcriptional level
in response to HFHS-induced metabolic stress
In order to identify specific metabolic and signaling pathways that were
up- or down-regulated by HFHS-diet in islets from different mouse
strains, we performed gene set enrichment analysis (GSEA) [36],
comparing gene lists ranked by fold change (HFHS vs RC) against
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
Figure 2B shows a heatmap of 10 of the most significantly enriched
pathways at day 2, representing initial adaptation to HFHS diet (for all
time-points see Supplementary Figure S3). The strains are ordered
GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/). www.molecularmetabolism.com
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Figure 1: Impact of HFD and age on metabolic parameters. Boxplots showing differences between HFHS (yellow) and RC (green) diet in the 6 mouse strains over time for (A)
Body weight (g), (B) AUC glycemia measured during the glucose tolerance test (OGTT), (C) Basal insulinemia (ng/ml) measured at the start of the OGTT, and (D) Stimulated
Insulinemia (ng/ml) measured at 15 min following glucose administration. The bottom and top of the boxes represent the first and third quartiles, with the horizontal line rep-
resenting the median. The upper whiskers represent the third quartile plus 1.5� IQR (interquartile range); the lower whiskers represent the first quartile minus 1.5� IQR. Outlier
points beyond this range are indicated above or below the whiskers. Statistical significance between HFHS and RC at each time-point was measured using the two-sided Student’s
t-test and p-values were corrected for multiple comparisons using the Benjamini Hochberg FDR method [33]. Statistically significant comparisons following FDR correction
(FDR � 0.05) are indicated by a double asterisk. Marginally significant comparisons (raw p-value � 0.05) are indicated by a single asterisk.

Table 1 e Insulinogenic index difference between HFHS and RC-diet fed
strains. The index is calculated as the mean difference over all four time-
points.

Strain Insulinogenic index difference (HFHS-RC)

DBA/2J 0.0163
AKR/J 0.0033
C57Bl/6J 0.0030
A/J �0.0014
BALB/cJ �0.0021
129S2/SvPas �0.0038
along the x-axis according to insulinogenic index difference (Table 1).
DNA replication, oxidative phosphorylation, biosynthesis, and protea-
some pathways were up-regulated in the most insulinogenic strains,
DBA/2J and AKR/J. Gene expression alterations in C57Bl/6J were less
marked but oxidative phosphorylation and proteasome pathways were
up-regulated in addition to fatty acid metabolism. The least insulino-
genic strains, 129S2/SvPas, BALB/cJ, and A/J, showed no evidence for
modulation of these pathways. Interestingly, extracellular matrix (ECM)
genes were down-regulated in AKR/J, DBA/2J and to a lesser extent in
A/J, suggesting that modulation of ECM could be linked to beta cell
adaptation (or maladaptation) to metabolic stress.
MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier GmbH. This is an
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3.4. The global network analysis highlights key pathways and
processes affected in the different mouse strains
In order to capture the diversity of both islet transcriptomic and
phenotypic data collected, we built a transcriptional network inte-
grating the RNA-Seq and phenotypic data together with annotations of
known pathways and gene ontology categories (see Supplementary
Methods). To perform the integration, we first analyzed the RNA-Seq
data to identify gene co-expression modules. Such modules are
based on the concept that genes sharing more neighbors in a corre-
lation network are more likely to be functionally related [37]. Each
module was then correlated with the phenotypic traits and highly
connected ‘hub’ genes were identified in each of the modules. Mod-
ules were also tested for enrichment against known pathways and
gene ontology categories. The gene expression modules, ‘hub’ genes,
enriched pathways, Gene Ontology (GO) categories, and phenotypic
traits were integrated together into a single global network. An an-
notated representation of the network is shown in Figure 3. Manual
exploration of the network revealed that several of these node clusters
represented distinct sets of pathways, biological processes, or related
phenotypic traits. We identified distinct node clusters related to focal
adhesion, immune response, actin cytoskeleton, MAPK signaling, lipid
metabolism, carbohydrate metabolism, oxidative phosphorylation, DNA
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ 343
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replication, cell cycle, insulin secretion, glycemia/glucose tolerance,
and b/a cell mass.
This network captures the integrated genomics and physiological re-
sults from our mouse experiment into a single model. The network,
which can be explored within an appropriate software tool such as
Cytoscape [38], is available as supplementary data.

3.5. A sub-network of islet genes is associated with glucose
tolerance
We interrogated the global network described above and identified
a gene co-expression module that was significantly correlated to
both oral glucose tolerance and insulin secretion. The correlation of
this and other modules to the phenotypic traits is shown in
344 MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier
Supplementary Figure S4. AUC glycemia is an indicator of glucose
intolerance: the higher the AUC, the higher the glucose intolerance.
We then searched for genes correlated to both the module and oral
glucose tolerance; these may represent genes of key influence that
are highly connected within the module and which may also affect
the trait. A scatter plot of the correlations of all genes to the module
and to oral glucose tolerance is shown in Figure 4A. In the figure,
yellow points indicate those that show the highest correlations to
both the trait and the module. These genes were then used to create
a sub-network of genes related to glucose tolerance. A representa-
tion of the sub-network is shown in Figure 4B. Remarkably, one of
the prominent genes in this network is Sfrp4 (indicated by a dotted
box in Figure 4B), which has recently been identified as a key marker
GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/). www.molecularmetabolism.com
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Figure 3: Network representation integrating gene modules, pathways, and phenotypic traits. See Supplementary Methods for details of the network generation. Colors
represent different relationship types and are included for illustrative purposes only. The figure is overlaid with manual annotations referring to particular pathways or traits that are
approximately represented at that position in the network. Network visualisation was produced using Gephi 0.8.2.
for diabetes in humans [39]. Sfrp4 is a secreted protein modulator of
Wnt signaling, which is thought to be linked to islet inflammation and
the resulting loss of insulin secretion and reduced tolerance to
glucose through regulation by IL1B [39]. Although we did not find
evidence for enrichment of inflammatory markers such as interleukin
1B (IL-1B), the sub-network is significantly enriched for secreted and
extracellular matrix proteins (GO:0031012 w extracellular matrix,
enrichment p-value ¼ 2.97e-7, FDR ¼ 3.54e-4; Supplementary
Table S2), indicating that changes occurring in the extracellular
space might be linked to islet damage and impaired insulin secretion
and glucose tolerance.

3.6. Elovl2 expression positively correlates with glucose
intolerance and insulin secretion
Genes involved in fatty acid metabolism were amongst the top
pathways and biological processes enriched in the sub-network
(GO:0006631 w fatty acid metabolic process, enrichment
MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier GmbH. This is an
by-nc-nd/4.0/). www.molecularmetabolism.com
p-value ¼ 0.001, FDR ¼ 2; Supplementary Table S2). There were
several genes related to fatty acid metabolism in the sub-network,
notably Elovl2 (Elongase of very long-chain fatty acids 2), Acadl
(Acyl-CoA Dehydrogenase, Long Chain, which catalyzes the initial step
of mitochondrial beta oxidation to straight fatty acid), and Acot4 (Acyl-
CoA Thioesterase 4, which regulates intracellular levels of Acyl-CoA).
The expression levels of all three genes were positively correlated
with insulin secretion and AUC glycemia, but of the three genes, Elovl2
was also amongst the most highly connected genes in the network
(indicated by a solid rectangle in Figure 4B) and was also amongst the
top genes correlating with AUC glycemia (Figure 4A). These two ob-
servations led us to hypothesize that Elovl2 could be a key gene
involved in regulating insulin secretion.
Scatter plots of Elovl2 gene expression against AUC glycemia and
insulinemia are shown in Figure 5. Correlations of Sfrp4 with the same
traits are shown for comparison. Elovl2 expression is positively
correlated with both AUC glycemia (glucose intolerance) and AUC
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ 345
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Figure 4: A gene co-expression module correlated to insulin secretion and oral glucose tolerance. (A) Scatter plot of AUC glucose correlation against module membership
(correlation to module) for all genes. Genes with the strongest correlations to both the module (Spearman’s jrj � 0.5) and to AUC glycemia (Spearman’s jrj � 0.4) are highlighted
by red points outlined in yellow. These genes were used to generate the network in (B). Elovl2 is indicated by a yellow diamond outlined in red. (B) Network generated from selected
module genes. Node size is proportional to degree and node color indicates correlation to AUC glycemia (blue: negative correlation; red: positive correlation). Edges (connections)
between nodes indicate correlation between genes (blue: negative; red: positive). Elovl2 (solid box) and Sfrp4 (dotted box) are indicated in the network. Full details of network
generation are described in Supplementary Methods.
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Figure 5: Scatter plots showing correlations between Elovl2 and Sfrp4 islet gene expression with AUC glycemia and insulinemia. (A) Elovl2 is positively correlated with
AUC glycemia: Pearson’s r ¼ 0.39, p-value ¼ 8.82e-05 (all samples); r ¼ 0.48, p-value ¼ 0.018 (HFHS samples); r ¼ 0.45, p-value ¼ 0.028 (RC samples). (B) Sfrp4 is negatively
correlated with AUC glycemia: Pearson’s r ¼ �0.52, p-value ¼ 6.16e-08 (all samples); r ¼ �0.51, p-value ¼ 0.01 (HFHS samples); r ¼ 0.51, p-value ¼ 0.01 (RC samples). (C)
Elovl2 is weakly positively correlated with AUC insulinemia: Pearson’s r ¼ 0.26, p-value ¼ 0.01 (all samples); r ¼ 0.18, p-value ¼ 0.4 (HFHS samples); r ¼ 0.37, p-value ¼ 0.07
(RC samples). (D) Sfrp4 is negatively correlated with AUC insulinemia: Pearson’s r ¼ �0.6, p-value ¼ 1.057e-10 (all samples); r ¼ �0.56, p-value ¼ 0.004 (HFHS samples);
r ¼ �0.62, p-value ¼ 0.001 (RC samples).
insulinemia (Figure 5A,C) in both HFHS and RC fed mice. The positive
correlation of Elovl2 expression with increased glucose intolerance
may appear counterintuitive since Elovl2 is also positively correlated
with insulin secretion. However, we observed a significant correlation
between glucose intolerance and insulin secretion across the mouse
models (Figure S5). This suggests that in our experiment, we captured
the initial adaptation of islets to metabolic challenge, where insulin
secretion was boosted to try to counteract decreasing tolerance to
glucose. These data suggest that Elovl2may have a regulatory role in b
cell function such that declining Elovl2 expression could contribute to
impaired insulin secretion.

3.7. Elovl2 knock down decreases glucose-stimulated insulin
secretion in mouse and human b cell lines
In order to gain further insight into the potential role of Elovl2 in b cell
function, we tested the effect of reducing the expression of Elovl2
mRNA on glucose-induced insulin secretion in cells grown in vitro.
Initially we treated two mouse b-cell lines (MIN6 and Beta TC-tet) with
MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier GmbH. This is an
by-nc-nd/4.0/). www.molecularmetabolism.com
specific small interfering RNAs (siRNA) against Elovl2 (Figure 6, A-F)
under conditions of 2 mM and 20 mM glucose. The effects of siRNA
directed towards Elovl2 or a random sequence (CTRL siRNA) are
shown in Figure 6A, D: Elovl2 mRNA expression was significantly
decreased compared to controls. For Beta TC-tet cells, 100 nM exendin
was added to increase glucose-induced insulin secretion. Whilst we
saw no difference at 2 mM glucose, we observed a significant
reduction in insulin secreted from Elovl2 siRNA-treated cells compared
to controls in both cell lines at 20 mM glucose (Figure 6B, E). The
reduction of insulin secretion in siRNA-treated cells was not due to
reduction of total insulin content (Figure 6C, F displays insulin secreted
normalized on insulin content), suggesting that the effect of the siRNA
was specifically acting on insulin secretion. This prompted us to test
the effect of Elovl2 knock down in human cells. For this, we used the
recently described human b-cell line, EndoC-bH1, which displays
many properties of functional human b cells [32,40,41]. In human
EndoC-bH1 cells, a pool of Elovl2 siRNA dramatically decreased Elovl2
expression (Figure 6G) compared to a CTRL siRNA pool. Insulin
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Figure 6: Effects of Elovl2 loss of function in glucose-stimulated insulin secretion, in mouse b-cell lines and human b-cell line. (A) Elovl2 mRNA levels expressed as the
ratio between the signal of Elovl2 and the signal of the housekeeping gene rpL19 (ribosomal protein L19), (B) Insulin secreted in ng/ml and (C) insulin secreted (% of content) in
MIN6 cells. (D) Elovl2 mRNA levels expressed as the ratio between the signal of Elovl2 and the signal of the housekeeping gene gusb (glucuronidase), (E) Insulin secreted in ng/ml
and (F) insulin secreted (% of content) in Beta TC-tet cells. (G) Elovl2 mRNA levels expressed as the ratio between the signal of Elovl2 and the signal of rpL19, (H) Insulin secreted in
ng/ml and (I) insulin secreted (% of content) as mean values (�SE) of three independent experiments. ***p < 0.001; **p < 0.01; *p < 0.05.
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secretion was significantly decreased at 20 mM but not at 0 mM
glucose (Figure 6H). This effect was even more marked when
normalizing for total insulin content (Figure 6I), suggesting that Elovl2
expression is required to ensure a correct insulin secretory response to
glucose. We thus demonstrate impaired insulin secretion with Elovl2
knock down in three different cell systems. This result is very unlikely
to be due to off-target effects since different siRNAs were used in
mouse compared to human cells, with the latter comprising a pool of
four Elovl2 siRNA to increase targeting efficiency and specificity. In
addition, using an adenoviral approach, we over-expressed Elovl2 in
MIN6 cells and determined insulin secretion in response to glucose
(Supplementary Figure S6). We found that Ad-Elovl2 had no effect on
basal insulin secretion but significantly potentiated insulin secretion
induced by high glucose, supporting the idea that Elovl2 is a new
player in insulin secretion. Moreover, we found that Ad-Elovl2 signif-
icantly increased DHA levels in MIN6 cells suggesting that intracellular
DHA could play a role in the regulation of glucose-induced insulin
secretion (Supplementary Figure S6D).
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4. DISCUSSION

4.1. A novel mouse resource for the study of islet dysfunction
The resource we present here integrates islet expression data with
deep phenotypic measurements from six mouse strains under
controlled diet and housing conditions. Since non-biological variability
is minimized due to controlled conditions and rigorous experimental
design, this enables direct comparison of molecular and physiological
phenotypes between the different mouse strains. We also performed a
systems level analysis, integrating expression and phenotypic infor-
mation with known pathways and biological functions, thus capturing
in a single network model the knowledge gained from the entire
experiment. We interrogated this model and built a co-expression sub-
network of genes related to whole body glucose tolerance and plasma
insulin levels following oral glucose stimulation. From this sub-
network, we identified a highly connected gene, Elovl2, which was
correlated to both glucose tolerance and plasma insulin. Elovl2
expression was subsequently confirmed to be important for glucose-
GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/). www.molecularmetabolism.com
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induced insulin secretion by siRNA knock down in both mouse and
human b cell lines. Although we describe the importance of only a
single identified gene, Elovl2, here, the integrated database contains a
wealth of evidence for further potential candidates. Indeed, using these
data, nucleus-encoded mitochondrial genes Ndufb8 and Atp5a1 are
also shown to be key regulators of insulin secretion (Parnis et al.,
submitted).

4.2. Strain phenotypes are mirrored by distinct islet gene
expression profiles
Phenotypically, we observe that mice from the different strains show a
distinct response to HFHS diet. This is in accordance with a previous
study from Gauguier and colleagues [24] showing strain-specific
patterns of adaptation to HFHS diet [23e25,27,30,31]. Intriguingly,
we found that BALB/cJ mice fed a HFHS diet did not develop obesity or
increased body weight compared to chow-fed controls although they
displayed a dramatic intolerance to glucose as early as day 10.
However, the percentage of fat mass (measured with an EchoMRI) was
strongly increased in HFHS-fed BALB/cJ mice after 90 days of diet (1.6
fold, data not shown) suggesting that this is likely due to early ectopic
fat storage in insulin target tissues. In comparison, DBA/2J mice,
which present early signs of obesity compared to mice fed with regular
chow, have a 3.6 fold increase in the percentage of fat mass at three
months, largely reflecting storage in classical adipose tissue depots
(e.g. subcutaneous, inguinal). These data underline the important
phenotypic differences between the mouse strains and suggest that
they may be at least in part due to differential underlying response of
the b-cells. Additional studies would be required in female mice to
address potential sex dependent differences.
Similarly to the marked phenotypic differences we observed, our data
show that islet transcriptional profiles are very different between
strains. This indicates that strain-specific/strain-dependent changes
occurring over time in both RC and HFHS diet fed mice may be
important to link transcriptomic signatures to islet function. In order to
further investigate this link, we exploited the differences in islet gene
expression signatures by measuring correlations both between islet
genes, and also between gene co-expression modules and phenotypic
traits. The result is a global network that captures the strain-specific/
strain-dependent changes over time under metabolic stress, linking
the mouse phenotypes with islet transcriptomics in one model. Many of
the phenotypic changes we observe are a result of the interplay be-
tween many different tissues. In this regard, it would be important to
extend the model in the future to include insulin sensitive tissues such
as liver, muscle, and adipose tissue.

4.3. Elovl2 is a novel player in insulin secretion
We identified a sub-network of genes correlated to glucose tolerance
and insulinemia and found that Elovl2 gene expression was amongst
the most strongly associated with both glucose intolerance and insulin
secretion within the sub-network. Elovl2 encodes the enzyme that
synthetizes DHA (C22:6), an omega-3 series very long chain poly-
unsaturated fatty-acid (PUFA) [42]. Expression of Elovl2 has been
found in various tissues such as liver, testis, uterus, placenta, mam-
mary gland, retina, and certain areas of the brain, all of which are
tissues that are documented as having significant levels of DHA
[43,44]. DHA is also known to play a critical role in brain development
and has neuroprotective effects [45].
Several studies have shown that saturated fatty acids decrease insulin
secretion and worsen insulin sensitivity, whereas polyunsaturated fatty
acids (PUFAs) such as DHA preserve or improve insulin secretion and
sensitivity [46,47]. However, most of these earlier studies are based on
MOLECULAR METABOLISM 6 (2017) 340e351 � 2017 The Authors. Published by Elsevier GmbH. This is an
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exogenous PUFAs originating from fish oil [48], and the role of
endogenously synthesized PUFAs as opposed to PUFAs taken up
through diet is relatively unknown. Using mice, a previous study
showed a role of Elovl2 in sperm maturation [49]. More recently, the
same group demonstrated that Elovl2 positively influenced de novo
lipogenesis by modulating hepatic levels of key lipogenic genes [50].
However, Elovl2�/� mice were resistant to hepatic steatosis and diet-
induced weight gain, implying that hepatic DHA synthesis via Elovl2
could also regulate lipid storage and fat mass expansion.
To date, the expression and role of Elovl2 have not been examined in
pancreatic islets or b cells. Our study reveals that Elovl2 is expressed
in the pancreatic b cell lines MIN6 and Beta TC-tet and in the human b
cell line EndoC-bH1 [51]. Correspondingly, recently published tran-
scriptomic data [52,53] also demonstrate detectable, although low,
levels of Elovl2 mRNA in adult human b cells. Interestingly, Elovl2
expression was also up-regulatedw2-fold in mouse islets in response
to deletion of the tumor promoter Liver Kinase B1 (LKB1) [54], a
condition in which glucose-stimulated insulin secretion is also
enhanced [55]. Interestingly, we also found that over-expression of
Elovl2 in b cells potentiated glucose-induced insulin secretion and was
associated with an increase of DHA levels.
We demonstrate that Elovl2 loss of function leads to decreased insulin
secretion in two different mouse beta cell lines: MIN6 cells known for
their strong responsiveness to glucose, and Beta TC-tet cells that are
responsive to glucose plus Exendin-4, a GLP1 receptor agonist. In
addition, we show the same defect in glucose-induced insulin
secretion after Elovl2 silencing in human EndoC-bH1 cells, a unique
and novel tool to study functional human beta cells in standardized
assays [32]. To our knowledge, we provide the first demonstration that
Elovl2 is involved in the control of glucose-stimulated insulin secretion.
Since both in vitro and in vivo exogenous DHA has been shown to
amplify (either directly or indirectly) insulin secretion [48], we suggest
that a decrease of Elovl2 expression and consequently ELOVL2 activity
may lead to an endogenous DHA production and thus to blunted
glucose-induced insulin secretion. Previous studies have shown that
PUFAs including DHA may play a protective role against the develop-
ment of metabolic diseases mainly by regulating insulin sensitivity
[56,57]. Our results suggest for the first time that endogenously pro-
duced DHA, controlled by Elovl2, may also mediate its effect by acting
directly on pancreatic b cells.

AVAILABILITY OF DATA

All RNA-Seq data has been deposited in NCBI GEO under accession
code GSE78183. The data have been managed according to FAIR
guidelines [58]. This has been performed by encoding both raw and
normalized RNA-Seq expression data, together with all measurements
and detailed phenotypic data down to the level of the individual mouse
in Resource Description Format (RDF), using existing ontologies to
encode the metadata. The RDF formatted data as well as a description
of all metadata is available on request.
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