33 research outputs found
Rates of microbial hydrogen oxidation and sulfate reduction in Opalinus Clay rock
Hydrogen gas (H2) may be produced by the anoxic corrosion of steel components in underground structures, such as geological repositories for radioactive waste. In such environments, hydrogen was shown to serve as an electron donor for autotrophic bacteria. High gas overpressures are to be avoided in radioactive waste repositories and, thus, microbial consumption of H2 is generally viewed as beneficial. However, to fully consider this biological process in models of repository evolution over time, it is crucial to determine the in situ rates of microbial hydrogen oxidation and sulfate reduction. These rates were estimated through two distinct in situ experiments, using several measurement and calculation methods. Volumetric consumption rates were calculated to be between 1.13 and 1.93 μmol cm−3 day−1 for H2, and 0.14 and 0.20 μmol cm−3 day−1 for sulfate. Based on the stoichiometry of the reaction, there is an excess of H2 consumed, suggesting that it serves as an electron donor to reduce electron acceptors other than sulfate, and/or that some H2 is lost via diffusion. These rate estimates are critical to evaluate whether biological H2 consumption can negate H2 production in repositories, and to determine whether sulfate reduction can consume sulfate faster than it is replenished by diffusion, which could lead to methanogenic conditions
Gene expression profiling reveals consistent differences between clinical samples of human leukaemias and their model cell lines
Microarray gene expression profiles of fresh clinical samples of chronic myeloid leukaemia in chronic phase, acute promyelocytic leukaemia and acute monocytic leukaemia were compared with profiles from cell lines representing the corresponding types of leukaemia (K562, NB4, HL60). In a hierarchical clustering analysis, all clinical samples clustered separately from the cell lines, regardless of leukaemic subtype. Gene ontology analysis showed that cell lines chiefly overexpressed genes related to macromolecular metabolism, whereas in clinical samples genes related to the immune response were abundantly expressed. These findings must be taken into consideration when conclusions from cell line-based studies are extrapolated to patients
A minimalistic microbial food web in an excavated deep subsurface clay rock
Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H-2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO2. In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present
Modelling of the long-term evolution and performance of engineered barrier system
Components of the so-called “multiple-barrier system” from the waste form to the biosphere include a combination of waste containers, engineered barriers, and natural barriers. The Engineered Barrier System (EBS) is crucial for containment and isolation in a radioactive waste disposal system. The number, types, and assigned safety functions of the various engineered barriers depend on the chosen repository concept, the waste form, the radionuclides waste inventory, the selected host rock, and the hydrogeological and geochemical settings of the repository site, among others. EBS properties will evolve with time in response to the thermal, hydraulic, mechanical, radiological, and chemical gradients and interactions between the various constituents of the barriers and the host rock. Therefore, assessing how these properties evolve over long time frames is highly relevant for evaluating the performance of a repository system and safety function evaluations in a safety case. For this purpose, mechanistic numerical models are increasingly used. Such models provide an excellent way for integrating into a coherent framework a scientific understanding of coupled processes and their consequences on different properties of the materials in the EBS. Their development and validation are supported by R&D actions at the European level. For example, within the HORIZON 2020 project BEACON (Bentonite mechanical evolution), the development, test, and validation of numerical models against experimental results have been carried out in order to predict the evolution of the hydromechanical properties of bentonite during the saturation process. Also, in relation to the coupling with mechanics, WP16 MAGIC (chemo Mechanical AGIng of Cementitious materials) of the EURAD Joint Programming Initiative focuses on multi-scale chemo-mechanical modeling of cementitious-based materials that evolve under chemical perturbation. Integration of chemical evolution in models of varying complexity is a major issue tackled in the WP2 ACED (Assessment of Chemical Evolution of ILW and HLW Disposal cells) of EURAD. WP4 DONUT (Development and improvement of numerical methods and tools for modeling coupled processes) of EURAD aims at developing and improving numerical models and tools to integrate more complexity and coupling between processes. The combined progress of those projects at a pan-European level definitively improves the understanding of and the capabilities for assessing the long-term evolution of engineered barrier systems
Updating the Wnt pathways
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases
l\u27Être et l\u27Étant, l\u27Un, les Universaux
Dans le cadre d\u27une conférence sur l\u27Introduction à l\u27interprétation des essais d\u27Edouard GLISSANT, Alexandre LEUPIN, Professeur distingué au département d\u27études françaises à Louisiana State University, étaye d\u27essentielles notions philosophiques. Il a étendu ses exposés sur trois journées. Durant la première, il aborde les thèmes : l\u27Être et l\u27Étant, l\u27Un, les Universaux. Le premier constitue selon lui, la question philosophique par excellence tenant compte de son utilisation dans la vie au quotidien. Il développe étape par étape le contenu des autres notions pour permettre à l\u27assistance de comprendre le bien-fondé de chacune d\u27entre elles
Présentation du colloque
Dominique AURELIA, Vice-Présidente déléguée aux Relations Internationales - UA, Alexandre LEUPIN, Professeur à Louisiana State University, Jean-Pierre SAINTON, Professeur à l\u27Université des Antilles expliquent le contexte dans lequel le colloque a été organisé et les motifs du choix du thème retenu « Edouard Glissant, l\u27éclat et l\u27obscur ». Alexandre LEUPIN a profité de l\u27occasion pour rappeler les débuts de la collaboration de l\u27Université des Antilles et de Louisiana State University