761 research outputs found

    A matched-filter approach to radio variability and transients: searching for orphan afterglows in the VAST Pilot Survey

    Full text link
    Radio transient searches using traditional variability metrics struggle to recover sources whose evolution timescale is significantly longer than the survey cadence. Motivated by the recent observations of slowly evolving radio afterglows at gigahertz frequency, we present the results of a search for radio variables and transients using an alternative matched-filter approach. We designed our matched-filter to recover sources with radio light curves that have a high-significance fit to power-law and smoothly broken power-law functions; light curves following these functions are characteristic of synchrotron transients, including "orphan" gamma-ray burst afterglows, which were the primary targets of our search. Applying this matched-filter approach to data from Variables and Slow Transients Pilot Survey conducted using the Australian SKA Pathfinder, we produced five candidates in our search. Subsequent Australia Telescope Compact Array observations and analysis revealed that: one is likely a synchrotron transient; one is likely a flaring active galactic nucleus, exhibiting a flat-to-steep spectral transition over 44\,months; one is associated with a starburst galaxy, with the radio emission originating from either star formation or an underlying slowly-evolving transient; and the remaining two are likely extrinsic variables caused by interstellar scintillation. The synchrotron transient, VAST J175036.1-181454, has a multi-frequency light curve, peak spectral luminosity and volumetric rate that is consistent with both an off-axis afterglow and an off-axis tidal disruption event; interpreted as an off-axis afterglow would imply an average inverse beaming factor fb1=860710+1980\langle f^{-1}_{\text{b}} \rangle = 860^{+1980}_{-710}, or equivalently, an average jet opening angle of θj=31+4\langle \theta_{\textrm{j}} \rangle = 3^{+4}_{-1}\,deg.Comment: 20 pages, 6 figures; accepted for publication in MNRA

    A pilot ASKAP survey for radio transients towards the Galactic Centre

    Full text link
    We present the results of a radio transient and polarisation survey towards the Galactic Centre, conducted as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients pilot survey. The survey region consisted of five fields covering 265deg2\sim265\,{\rm deg}^2 (350l10350^\circ\lesssim l\lesssim10^\circ, b10\vert b\vert \lesssim 10^\circ). Each field was observed for 12\,minutes, with between 7 and 9 repeats on cadences of between one day and four months. We detected eight highly variable sources and seven highly circularly-polarised sources (14 unique sources in total). Seven of these sources are known pulsars including the rotating radio transient PSR~J1739--2521 and the eclipsing pulsar PSR~J1723--2837. One of them is a low mass X-ray binary, 4U 1758--25. Three of them are coincident with optical or infrared sources and are likely to be stars. The remaining three may be related to the class of Galactic Centre Radio Transients (including a highly likely one, VAST~J173608.2--321634, that has been reported previously), although this class is not yet understood. In the coming years, we expect to detect \sim40 bursts from this kind of source with the proposed four-year VAST survey if the distribution of the source is isotropic over the Galactic fields.Comment: 17 pages, 13 figures, Accepted for publication in MNRA

    Realization of quantum process tomography in NMR

    Full text link
    Quantum process tomography is a procedure by which the unknown dynamical evolution of an open quantum system can be fully experimentally characterized. We demonstrate explicitly how this procedure can be implemented with a nuclear magnetic resonance quantum computer. This allows us to measure the fidelity of a controlled-not logic gate and to experimentally investigate the error model for our computer. Based on the latter analysis, we test an important assumption underlying nearly all models of quantum error correction, the independence of errors on different qubits.Comment: 8 pages, 7 EPS figures, REVTe

    Classical Novae in the ASKAP Pilot Surveys

    Full text link
    We present a systematic search for radio counterparts of novae using the Australian Square Kilometer Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, which covered the entire sky south of declination +41+41^{\circ} (34,000\sim34,000 square degrees) at a central frequency of 887.5 MHz, the Variables and Slow Transients Pilot Survey, which covered 5,000\sim5,000 square degrees per epoch (887.5 MHz), and other ASKAP pilot surveys, which covered 2002000\sim200-2000 square degrees with 2-12 hour integration times. We crossmatched radio sources found in these surveys over a two-year period, from April 2019 to August 2021, with 440 previously identified optical novae, and found radio counterparts for four novae: V5668 Sgr, V1369 Cen, YZ Ret, and RR Tel. Follow-up observations with the Australian Telescope Compact Array confirm the ejecta thinning across all observed bands with spectral analysis indicative of synchrotron emission in V1369 Cen and YZ Ret. Our light-curve fit with the Hubble Flow model yields a value of 1.65±0.17×104M1.65\pm 0.17 \times 10^{-4} \rm \:M_\odot for the mass ejected in V1369 Cen. We also derive a peak surface brightness temperature of 250±80250\pm80 K for YZ Ret. Using Hubble Flow model simulated radio lightcurves for novae, we demonstrate that with a 5σ\sigma sensitivity limit of 1.5 mJy in 15-min survey observations, we can detect radio emission up to a distance of 4 kpc if ejecta mass is in the range 103M10^{-3}\rm \:M_\odot, and upto 1 kpc if ejecta mass is in the range 105103M10^{-5}-10^{-3}\rm \:M_\odot. Our study highlights ASKAP's ability to contribute to future radio observations for novae within a distance of 1 kpc hosted on white dwarfs with masses 0.41.25M0.4-1.25\:\rm M_\odot , and within a distance of 4 kpc hosted on white dwarfs with masses 0.41.0M0.4-1.0\:\rm M_\odot.Comment: This paper has been accepted for publication in PASA. It consists of 13 pages, 5 figures and 4 table

    Lower bounds on the complexity of simulating quantum gates

    Get PDF
    We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound holds for arbitrary n-qubit gates.Comment: 6 page

    Multimode photon blockade

    Full text link
    Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of 2\sim 2 ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of 109\sim10^9. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography.Comment: 5 pages of main text with 5 figures. 11 pages of supplementary information with 10 figure

    CD36 Mediates the Innate Host Response to β-Amyloid

    Get PDF
    Accumulation of inflammatory microglia in Alzheimer's senile plaques is a hallmark of the innate response to β-amyloid fibrils and can initiate and propagate neurodegeneration characteristic of Alzheimer's disease (AD). The molecular mechanism whereby fibrillar β-amyloid activates the inflammatory response has not been elucidated. CD36, a class B scavenger receptor, is expressed on microglia in normal and AD brains and binds to β-amyloid fibrils in vitro. We report here that microglia and macrophages, isolated from CD36 null mice, had marked reductions in fibrillar β-amyloid–induced secretion of cytokines, chemokines, and reactive oxygen species. Intraperitoneal and stereotaxic intracerebral injection of fibrillar β-amyloid in CD36 null mice induced significantly less macrophage and microglial recruitment into the peritoneum and brain, respectively, than in wild-type mice. Our data reveal that CD36, a major pattern recognition receptor, mediates microglial and macrophage response to β-amyloid, and imply that CD36 plays a key role in the proinflammatory events associated with AD

    Decomposition, Reformulation, and Diving in University Course Timetabling

    Full text link
    In many real-life optimisation problems, there are multiple interacting components in a solution. For example, different components might specify assignments to different kinds of resource. Often, each component is associated with different sets of soft constraints, and so with different measures of soft constraint violation. The goal is then to minimise a linear combination of such measures. This paper studies an approach to such problems, which can be thought of as multiphase exploitation of multiple objective-/value-restricted submodels. In this approach, only one computationally difficult component of a problem and the associated subset of objectives is considered at first. This produces partial solutions, which define interesting neighbourhoods in the search space of the complete problem. Often, it is possible to pick the initial component so that variable aggregation can be performed at the first stage, and the neighbourhoods to be explored next are guaranteed to contain feasible solutions. Using integer programming, it is then easy to implement heuristics producing solutions with bounds on their quality. Our study is performed on a university course timetabling problem used in the 2007 International Timetabling Competition, also known as the Udine Course Timetabling Problem. In the proposed heuristic, an objective-restricted neighbourhood generator produces assignments of periods to events, with decreasing numbers of violations of two period-related soft constraints. Those are relaxed into assignments of events to days, which define neighbourhoods that are easier to search with respect to all four soft constraints. Integer programming formulations for all subproblems are given and evaluated using ILOG CPLEX 11. The wider applicability of this approach is analysed and discussed.Comment: 45 pages, 7 figures. Improved typesetting of figures and table

    Cytoplasmic cyclin E is an independent marker of aggressive tumor biology and breast cancer-specific mortality in women over 70 years of age

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Multi-cohort analysis demonstrated that cytoplasmic cyclin E expression in primary breast tumors predicts aggressive disease. However, compared to their younger counterparts, older patients have favorable tumor biology and are less likely to die of breast cancer. Biomarkers therefore require interpretation in this specific context. Here, we assess data on cytoplasmic cyclin E from a UK cohort of older women alongside a panel of >20 biomarkers. Between 1973 and 2010, 813 women ≥70 years of age underwent initial surgery for early breast cancer, from which a tissue microarray was constructed (n = 517). Biomarker expression was assessed by immunohistochemistry. Multivariate analysis of breast cancer-specific survival was performed using Cox’s proportional hazards. We found that cytoplasmic cyclin E was the only biological factor independently predictive of breast cancer-specific survival in this cohort of older women (hazard ratio (HR) = 6.23, 95% confidence interval (CI) = 1.93–20.14; p = 0.002). At ten years, 42% of older patients with cytoplasmic cyclin E-positive tumors had died of breast cancer versus 8% of negative cases (p < 0.0005). We conclude that cytoplasmic cyclin E is an exquisite marker of aggressive tumor biology in older women. Patients with cytoplasmic cyclin E-negative tumors are unlikely to die of breast cancer. These data have the potential to influence treatment strategy in older patients
    corecore