1,327 research outputs found

    PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins

    Get PDF
    Post-translational modifications (PTMs) are involved in the regulation and structural stabilization of eukaryotic proteins. The combination of individual PTM states is a key to modulate cellular functions as became evident in a few well-studied proteins. This combinatorial setting, dubbed the PTM code, has been proposed to be extended to whole proteomes in eukaryotes. Although we are still far from deciphering such a complex language, thousands of protein PTM sites are being mapped by high-throughput technologies, thus providing sufficient data for comparative analysis. PTMcode (http://ptmcode.embl.de) aims to compile known and predicted PTM associations to provide a framework that would enable hypothesis-driven experimental or computational analysis of various scales. In its first release, PTMcode provides PTM functional associations of 13 different PTM types within proteins in 8 eukaryotes. They are based on five evidence channels: a literature survey, residue co-evolution, structural proximity, PTMs at the same residue and location within PTM highly enriched protein regions (hotspots). PTMcode is presented as a protein-based searchable database with an interactive web interface providing the context of the co-regulation of nearly 75 000 residues in >10 000 proteins

    PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins

    Get PDF
    The post-translational regulation of proteins is mainly driven by two molecular events, their modification by several types of moieties and their interaction with other proteins. These two processes are interdependent and together are responsible for the function of the protein in a particular cell state. Several databases focus on the prediction and compilation of protein-protein interactions (PPIs) and no less on the collection and analysis of protein post-translational modifications (PTMs), however, there are no resources that concentrate on describing the regulatory role of PTMs in PPIs. We developed several methods based on residue co-evolution and proximity to predict the functional associations of pairs of PTMs that we apply to modifications in the same protein and between two interacting proteins. In order to make data available for understudied organisms, PTMcode v2 (http://ptmcode.embl.de) includes a new strategy to propagate PTMs from validated modified sites through orthologous proteins. The second release of PTMcode covers 19 eukaryotic species from which we collected more than 300 000 experimentally verified PTMs (>1 300 000 propagated) of 69 types extracting the post-translational regulation of >100 000 proteins and >100 000 interactions. In total, we report 8 million associations of PTMs regulating single proteins and over 9.4 million interplays tuning PPIs

    STITCH: interaction networks of chemicals and proteins

    Get PDF
    The knowledge about interactions between proteins and small molecules is essential for the understanding of molecular and cellular functions. However, information on such interactions is widely dispersed across numerous databases and the literature. To facilitate access to this data, STITCH (‘search tool for interactions of chemicals’) integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug–target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins. Each proposed interaction can be traced back to the original data sources. Our database contains interaction information for over 68 000 different chemicals, including 2200 drugs, and connects them to 1.5 million genes across 373 genomes and their interactions contained in the STRING database. STITCH is available at http://stitch.embl.de

    Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer

    Get PDF
    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen

    eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations

    Get PDF
    The identification of orthologous relationships forms the basis for most comparative genomics studies. Here, we present the second version of the eggNOG database, which contains orthologous groups (OGs) constructed through identification of reciprocal best BLAST matches and triangular linkage clustering. We applied this procedure to 630 complete genomes (529 bacteria, 46 archaea and 55 eukaryotes), which is a 2-fold increase relative to the previous version. The pipeline yielded 224 847 OGs, including 9724 extended versions of the original COG and KOG. We computed OGs for different levels of the tree of life; in addition to the species groups included in our first release (i.e. fungi, metazoa, insects, vertebrates and mammals), we have now constructed OGs for archaea, fishes, rodents and primates. We automatically annotate the non-supervised orthologous groups (NOGs) with functional descriptions, protein domains, and functional categories as defined initially for the COG/KOG database. In-depth analysis is facilitated by precomputed high-quality multiple sequence alignments and maximum-likelihood trees for each of the available OGs. Altogether, eggNOG covers 2 242 035 proteins (built from 2 590 259 proteins) and provides a broad functional description for at least 1 966 709 (88%) of them. Users can access the complete set of orthologous groups via a web interface at: http://eggnog.embl.de

    proGenomes2: an improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes

    Get PDF
    Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/

    eggNOG: automated construction and annotation of orthologous groups of genes

    Get PDF
    The identification of orthologous genes forms the basis for most comparative genomics studies. Existing approaches either lack functional annotation of the identified orthologous groups, hampering the interpretation of subsequent results, or are manually annotated and thus lag behind the rapid sequencing of new genomes. Here we present the eggNOG database (‘evolutionary genealogy of genes: Non-supervised Orthologous Groups’), which contains orthologous groups constructed from Smith–Waterman alignments through identification of reciprocal best matches and triangular linkage clustering. Applying this procedure to 312 bacterial, 26 archaeal and 35 eukaryotic genomes yielded 43 582 course-grained orthologous groups of which 9724 are extended versions of those from the original COG/KOG database. We also constructed more fine-grained groups for selected subsets of organisms, such as the 19 914 mammalian orthologous groups. We automatically annotated our non-supervised orthologous groups with functional descriptions, which were derived by identifying common denominators for the genes based on their individual textual descriptions, annotated functional categories, and predicted protein domains. The orthologous groups in eggNOG contain 1 241 751 genes and provide at least a broad functional description for 77% of them. Users can query the resource for individual genes via a web interface or download the complete set of orthologous groups at http://eggnog.embl.de

    Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening

    Get PDF
    To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1. Each BVMO has been probed with a large panel of potential substrates. Except for testing their substrate acceptance, also the enantioselectivity of some selected BVMOs was studied. The results provide insight into the biocatalytic potential of this collection of BVMOs and expand the biocatalytic repertoire known for BVMOs. This study also sheds light on the catalytic capacity of this large set of BVMOs that is present in this specific actinomycete. Furthermore, a comparative sequence analysis revealed a new BVMO-typifying sequence motif. This motif represents a useful tool for effective future genome mining efforts.

    Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB proteins as a subfamily of the BPI fold-containing superfamily

    Get PDF
    We present the BPIFAn/BPIFBn systematic nomenclature for the PLUNC (palate lung and nasal epithelium clone)/PSP (parotid secretory protein)/BSP30 (bovine salivary protein 30)/SMGB (submandibular gland protein B) family of proteins, based on an adaptation of the SPLUNCn (short PLUNCn)/LPLUNCn (large PLUNCn) nomenclature. The nomenclature is applied to a set of 102 sequences which we believe represent the current reliable data for BPIFA/BPIFB proteins across all species, including marsupials and birds. The nomenclature will be implemented by the HGNC (HUGO Gene Nomenclature Committee)

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed
    corecore