9 research outputs found

    Membranas electrohiladas de doble acción para tratamiento de agua

    Get PDF
    Número de publicación: 2 663 129 Número de solicitud: 201600852 51 Int. CI.: B01D 61/00 (2006.01) C02F 1/44 (2006.01)Membranas electrohiladas de doble acción para tratamiento de agua. La presente invención consiste en un procedimiento para la fabricación de membranas activas basadas en fibras submicrométricas que combinan una acción antimicrobiana con la capacidad de retención de contaminantes apolares en solución acuosa. Las membranas se producen mediante un procedimiento de electrohilado en disolución acuosa a partir de mezclas de un poliácido y un polialcohol solubles en agua que se estabilizan mediante un procedimiento de curado y se post-funcionalizan mediante la incorporación de dendrímeros con terminación amino mediante un procedimiento de injertado can ayuda de un agente de acoplamiento. La aplicación del material es la producción de membranas o componentes de membranas multicapa para tratamiento de agua con acción antimicrobiana y con capacidad para retener contaminantes apolares.Universidad de Almerí

    Effect of Carbamazepine, Ibuprofen, Triclosan and Sulfamethoxazole on Anaerobic Bioreactor Performance: Combining Cell Damage, Ecotoxicity and Chemical Information

    Get PDF
    Pharmaceuticals and personal care products (PPCPs) are partially degraded in wastewater treatment plants (WWTPs), thereby leading to the formation of more toxic metabolites. Bacterial populations in bioreactors operated in WWTPs are sensitive to different toxics such as heavy metals and aromatic compounds, but there is still little information on the effect that pharmaceuticals exert on their metabolism, especially under anaerobic conditions. This work evaluated the effect of selected pharmaceuticals that remain in solution and attached to biosolids on the metabolism of anaerobic biomass. Batch reactors operated in parallel under the pressure of four individual and mixed PPCPs (carbamazepine, ibuprofen, triclosan and sulfametoxazole) allowed us to obtain relevant information on anaerobic digestion performance, toxicological effects and alterations to key enzymes involved in the biodegradation process. Cell viability was quantitatively evaluated using an automatic analysis of confocal microscopy images, and showed that triclosan and mixed pollutants caused higher toxicity and cell death than the other individual compounds. Both individual pollutants and their mixture had a considerable impact on the anaerobic digestion process, favoring carbon dioxide production, lowering organic matter removal and methane production, which also produced microbial stress and irreversible cell damage.Comunidad de MadridUniversidad de Alcal

    Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes

    Get PDF
    Fatty acids methyl esters (FAME) have been prepared under microwave irradiation, using homogeneous catalysis, either in batch or in a flow system. The quality of the biodiesel obtained has been confirmed by GC analysis of the isolated product. While the initial experiments have been performed in a small scale laboratory batch reactor, the best experiment has been straightforward converted into a stop-flow process, by the use of a microwave flow system. Compared with conventional heating methods, the process using microwaves irradiation proved to be a faster method for alcoholysis of triglycerides with methanol, leading to high yields of FAME

    Radioterapia

    No full text

    Acute skin toxicity of ultra-hypofractionated whole breast radiotherapy with simultaneous integrated boost for early breast cancer

    No full text
    Background: Whole-breast irradiation (WBI) after breast conserving surgery (BCS) is indicated to improve loco-regional control and survival. Former studies showed that addition of tumor bed boost in all age groups significantly improved local control although no apparent impact on overall survival but with an increased risk of worse cosmetic outcome. Even though shortened regimens in 3 weeks are considered the standard, recent studies have shown the non-inferiority of a treatment regimen of 5 fractions in one-week in both locoregional control and toxicity profile, although simultaneous integrated boost (SIB) in this setting has been scarcely studied. Materials and Methods: From March-2020 to March-2022, 383 patients with early breast cancer diagnosis and a median age of 56 years-old (range 30–99)were included in a prospective registry of ultra-hypofractionated WBI up to a total dose of 26 Gy in 5.2 Gy/fraction with a SIB of 29 Gy in 5.8 Gy/fraction in 272 patients (71%), 30–31 Gy in 6–6.2 Gy/fraction in 111 patients (29%) with close/focally affected margins. Radiation treatment was delivered by conformal 3-D technique in 366 patients (95%), VMAT in 16patients (4%) and conformal 3-D with deep inspiration breath hold (DIBH) in 4patients (1%). Ninety-three per cent of patients received endocrine therapy and 43% systemic or targeted chemotherapy. Development of acute skin complications was retrospectively reviewed. Results: With a median follow-up of 18 months (range 7–31), all patients are alive without evidence of local, regional or distant relapse. Acute tolerance was acceptable, with null o mild toxicity: 182 (48%) and 15 (4%) patients developed skin toxicity grade 1 and 2 respectively; 9 (2%) and 2 (0.5%) patients breast edema grade 1and 2 respectively. No other acute toxicities were observed. We also evaluated development of early delayed complications and observed grade 1 breast edema in 6 patients (2%); grade 1 hyperpigmentation in 20 patients (5%); and grade 1 and 2 breast induration underneath boost region in 10(3%) and 2 patients (0.5%) respectively. We found a statistically significant correlation between the median PTVWBI and presence of skin toxicity (p = 0.028) as well as a significant correlation between late hyperpigmentation with the median PTVBOOST (p = 0.007) and the ratio PTVBOOST/PTVWBI (p = 0.042). Conclusion: Ultra-hypofractionated WBI + SIB in 5 fractions over one-week is feasible and well tolerated, although longer follow-up is necessary to confirm these results

    Could pulmonary low-dose radiation therapy be an alternative treatment for patients with COVID-19 pneumonia? Preliminary results of a multicenter SEOR-GICOR nonrandomized prospective trial (IPACOVID trial)

    No full text
    Purpose: To evaluate the efficacy and safety of lung low-dose radiation therapy (LD-RT) for pneumonia in patients with coronavirus disease 2019 (COVID-19). Materials and methods: Inclusion criteria comprised patients with COVID-19-related moderate-severe pneumonia warranting hospitalization with supplemental O2 and not candidates for admission to the intensive care unit because of comorbidities or general status. All patients received single lung dose of 0.5 Gy. Respiratory and systemic inflammatory parameters were evaluated before irradiation, at 24 h and 1 week after LD-RT. Primary endpoint was increased in the ratio of arterial oxygen partial pressure (PaO2) or the pulse oximetry saturation (SpO2) to fractional inspired oxygen (FiO2) ratio of at least 20% at 24 h with respect to the preirradiation value. Results: Between June and November 2020, 36 patients with COVID-19 pneumonia and a mean age of 84 years were enrolled. Seventeen were women and 19 were men and all of them had comorbidities. All patients had bilateral pulmonary infiltrates on chest X‑ray. All patients received dexamethasone treatment. Mean SpO2 pretreatment value was 94.28% and the SpO2/FiO2 ratio varied from 255 mm Hg to 283 mm Hg at 24 h and to 381 mm Hg at 1 week, respectively. In those who survived (23/36, 64%), a significant improvement was observed in the percentage of lung involvement in the CT scan at 1 week after LD-RT. No adverse effects related to radiation treatment have been reported. Conclusions: LD-RT appears to be a feasible and safe option in a population with COVID-19 bilateral interstitial pneumonia in the presence of significant comorbidities
    corecore