147 research outputs found

    Genetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer\u27s disease

    Get PDF
    An unresolved debate in Alzheimer's disease (AD) is whether amyloid plaques are pathogenic, causing overt physical disruption of neural circuits, or protective, sequestering soluble forms of amyloid-β (Aβ) that initiate synaptic damage and cognitive decline. Few animal models of AD have been capable of isolating the relative contribution made by soluble and insoluble forms of Aβ to the behavioral symptoms and biochemical consequences of the disease. Here we use a controllable transgenic mouse model expressing a mutant form of amyloid precursor protein (APP) to distinguish the impact of soluble Aβ from that of deposited amyloid on cognitive function and synaptic structure. Rapid inhibition of transgenic APP modulated the production of Aβ without affecting pre-existing amyloid deposits and restored cognitive performance to the level of healthy controls in Morris water maze, radial arm water maze, and fear conditioning. Selective reduction of Aβ with a γ-secretase inhibitor provided similar improvement, suggesting that transgene suppression restored cognition, at least in part by lowering Aβ. Cognitive improvement coincided with reduced levels of synaptotoxic Aβ oligomers, greater synaptic density surrounding amyloid plaques, and increased expression of presynaptic and postsynaptic markers. Together these findings indicate that transient Aβ species underlie much of the cognitive and synaptic deficits observed in this model and demonstrate that significant functional and structural recovery can be attained without removing deposited amyloid

    Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis

    Get PDF
    International audienceBACKGROUND: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine-disrupting compounds (EDCs) share a high degree of structural similarity with mild analgesics. OBJECTIVES AND METHODS: Using cell-based transfection and transduction experiments, mass spectrometry, and organotypic assays together with molecular modeling, we investigated whether inhibition of the PG pathway by known EDCs could be a novel point of endocrine disruption. RESULTS: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis, and this reduction was correlated with a reduced testosterone production. The inhibition of PG synthesis occurred without involvement of canonical PG receptors or the peroxisome proliferator-activated receptors (PPARs), which have previously been described as targets of EDCs. Instead, our results suggest that the compounds may bind directly into the active site of the cyclooxygenase (COX) enzymes, thereby obstructing the conversion of arachidonic acid to PG precursors without interfering with the expression of the COX enzymes. A common feature of the PG inhibitory EDCs is the presence of aromatic groups that may stabilize binding in the hydrophobic active site of the COX enzymes. CONCLUSION: Our findings suggest a hitherto unknown mode of action by EDCs through inhibition of the PG pathway and suggest new avenues to investigate effects of EDCs on reproductive and immunological disorders that have become increasingly common in recent decades

    Endocrine Disruption in Human Fetal Testis Explants by Individual and Combined Exposures to Selected Pharmaceuticals, Pesticides, and Environmental Pollutants

    Get PDF
    Reproduced with permission from Environmental Health PerspectivesNumerous chemicals are capable of disrupting androgen production, but the possibility that they might act together to produce effects greater than those of the most effective component in the mixture has not been studied directly in human tissues. Suppression of androgen synthesis in fetal life has been associated with testis maldescent, malformations of the genitalia at birth, and poor semen quality later in life.Our aim was to investigate whether chemicals can act together to disrupt androgen production in human fetal testis explants and to evaluate the importance of mixture effects when characterizing the hazard of individual chemicals.We used an organotypic culture system of human fetal testes explants called FEtal Gonad Assay (FEGA) with tissue obtained at 10 and 12 gestational wk (GW 10-12), to screen 27 chemicals individually for their possible anti-androgenic effect. Based on the results of the screen, we selected 11 compounds and tested them as mixtures.We evaluated mixtures composed of four and eight antiandrogens that contained the pharmaceuticals ketoconazole and theophylline and several previously untested chemicals, such as the pesticides imazalil and propiconazole. Mixtures of antiandrogens can suppress testosterone synthesis in human fetal testicular explants to an extent greater than that seen with individual chemicals. This revealed itself as a shift towards lower doses in the dose-response curves of individual antiandrogens that became more pronounced as the number of components increased from four to eight.Our results with the FEGA provide the foundations of a predictive human mixture risk assessment approach for anti-androgenic exposures in fetal life.We thank all the staff of the Department of Obstetrics and Gynecology and the Department of Pediatric Surgery of the Rennes Sud Hospital (Rennes, France) and the participating women, without whom this study would not have been possible. We acknowledge the financial supports from the Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES) ; CHEMIX-EST-12-171, ChemPSy- EST-13-081, Institut National de la Santé et de la Recherche Médicale (Inserm). P.Gaudriault is a recipient of a stipend of the Fondation pour la Recherche Médicale

    Soluble oligomers are sufficient for transmission of a yeast prion but do not confer phenotype

    Get PDF
    Amyloidogenic proteins aggregate through a self-templating mechanism that likely involves oligomeric or prefibrillar intermediates. For disease-associated amyloidogenic proteins, such intermediates have been suggested to be the primary cause of cellular toxicity. However, isolation and characterization of these oligomeric intermediates has proven difficult, sparking controversy over their biological relevance in disease pathology. Here, we describe an oligomeric species of a yeast prion protein in cells that is sufficient for prion transmission and infectivity. These oligomers differ from the classic prion aggregates in that they are soluble and less resistant to SDS. We found that large, SDS-resistant aggregates were required for the prion phenotype but that soluble, more SDS-sensitive oligomers contained all the information necessary to transmit the prion conformation. Thus, we identified distinct functional requirements of two types of prion species for this endogenous epigenetic element. Furthermore, the nontoxic, self-replicating amyloid conformers of yeast prion proteins have again provided valuable insight into the mechanisms of amyloid formation and propagation in cells

    Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism

    Get PDF
    correction de l'article correspondant à la notice https://prodinra.inra.fr/record/425677International audienceConcern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism

    Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Berberine (BER), the major alkaloidal component of <it>Rhizoma coptidis</it>, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid<sub>40/42</sub>, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear.</p> <p>Results</p> <p>Here, we report that BER could not only significantly decrease the production of beta-amyloid<sub>40/42 </sub>and the expression of beta-secretase (BACE), but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2) pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1) the activation activity of BER on the ERK1/2 pathway and (2) the inhibition activity of BER on the production of beta-amyloid<sub>40/42 </sub>and the expression of BACE.</p> <p>Conclusion</p> <p>Our data indicate that BER decreases the production of beta-amyloid<sub>40/42 </sub>by inhibiting the expression of BACE via activation of the ERK1/2 pathway.</p

    Point Mutations in Aβ Result in the Formation of Distinct Polymorphic Aggregates in the Presence of Lipid Bilayers

    Get PDF
    A hallmark of Alzheimer's disease (AD) is the rearrangement of the β-amyloid (Aβ) peptide to a non-native conformation that promotes the formation of toxic, nanoscale aggregates. Recent studies have pointed to the role of sample preparation in creating polymorphic fibrillar species. One of many potential pathways for Aβ toxicity may be modulation of lipid membrane function on cellular surfaces. There are several mutations clustered around the central hydrophobic core of Aβ near the α-secretase cleavage site (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These point mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy (CAA) to typical Alzheimer's disease pathology with plaques and tangles. We investigated how these point mutations alter Aβ aggregation in the presence of supported lipid membranes comprised of total brain lipid extract. Brain lipid extract bilayers were used as a physiologically relevant model of a neuronal cell surface. Intact lipid bilayers were exposed to predominantly monomeric preparations of Wild Type or different mutant forms of Aβ, and atomic force microscopy was used to monitor aggregate formation and morphology as well as bilayer integrity over a 12 hour period. The goal of this study was to determine how point mutations in Aβ, which alter peptide charge and hydrophobic character, influence interactions between Aβ and the lipid surface. While fibril morphology did not appear to be significantly altered when mutants were prepped similarly and incubated under free solution conditions, aggregation in the lipid membranes resulted in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also had a variable ability to disrupt bilayer integrity

    APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells

    Get PDF
    Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ1-40 and Aβ1-42. Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD

    Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models

    Get PDF
    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ1–42. Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APPSwInd and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβx-42 sandwich ELISA measures in APPSwInd mice of 10–11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ1–38 occurs as Aβ1–42 levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ1–42 accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders

    Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]

    Get PDF
    Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers
    • …
    corecore