27 research outputs found

    Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants

    Get PDF
    Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants

    Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors

    Get PDF
    [EN] Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid (ABA) signaling that are inhibited in an ABA-dependent manner by PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously uncharacterized member of this PP2C family in Arabidopsis (Arabidopsis thaliana), At5g59220, is a negative regulator of osmotic stress and ABA signaling and that this function was only apparent when double loss-of-function mutants with pp2ca-1/ahg3 were generated. At5g59220-green fluorescent protein and its close relative PP2CA-green fluorescent protein showed a predominant nuclear localization; however, hemagglutinin-tagged versions were also localized to cytosol and microsomal pellets. At5g59220 was selectively inhibited by some PYR/PYL ABA receptors, and close relatives of this PP2C, such as PP2CA/ABA-HYPERSENSITIVE GERMINATION3 (AHG3) and AHG1, showed a contrasting sensitivity to PYR/PYL inhibition. Interestingly, AHG1 was resistant to inhibition by the PYR/PYL receptors tested, which suggests that this seed-specific phosphatase is still able to regulate ABA signaling in the presence of ABA and PYR/PYL receptors and therefore to control the highly active ABA signaling pathway that operates during seed development. Moreover, the differential sensitivity of the phosphatases At5g59220 and PP2CA to inhibition by ABA receptors reveals a functional specialization of PYR/PYL ABA receptors to preferentially inhibit certain PP2Cs.This work was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional, and Consejo Superior de Investigaciones Cientificas (grant nos. BIO2008-00221 and BIO2011-23446 to P. L. R; fellowships to R.A. and L.R.; Juan de la Cierva contract to M.G.-G.).Antoni-Alandes, R.; González Guzmán, M.; Rodriguez, L.; Rodrigues, A.; Pizzio Bianchi, GA.; Rodríguez Egea, PL. (2012). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors. Plant Physiology. 158(2):970-980. https://doi.org/10.1104/pp.111.188623S970980158

    PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root

    Get PDF
    [EN] Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABA-INSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches. We also discovered that PYR/PYL receptors and clade A PP2Cs are crucial for the hydrotropic response that takes place to guide root growth far from regions with low water potential. Thus, an ABA-hypersensitive pp2c quadruple mutant showed enhanced hydrotropism, whereas an ABA-insensitive sextuple pyr/pyl mutant showed reduced hydrotropic response, indicating that ABA-dependent inhibition of PP2Cs by PYR/PYLs is required for the proper perception of a moisture gradient.This work was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional, and Consejo Superior de Investigaciones Cientificas (grant no. BIO2011-23446 to P. L. R.; fellowships to R. A., L. R., and M. P.-L.; Juan de la Cierva contract to M.G.-G.).Antoni-Alandes, R.; Gonzalez Guzman, M.; Rodriguez, L.; Peirats-Llobet, M.; Pizzio Bianchi, GA.; Fernández, MA.; De Winne, N.... (2013). PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiology. 161(2):931-941. doi:10.1104/pp.112.208678S931941161

    Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs

    Get PDF
    [EN] Abscisic acid (ABA) plays an essential function in plant physiology since it is required for biotic and abiotic stress responses as well as control of plant growth and development. A new family of soluble ABA receptors, named PYR/PYL/RCAR, has emerged as ABA sensors able to inhibit the activity of specific protein phosphatases type-2C (PP2Cs) in an ABA-dependent manner. The structural and functional mechanism by which ABA is perceived by these receptors and consequently leads to inhibition of the PP2Cs has been recently elucidated. The module PYR/PYL/RCAR-ABA-PP2C offers an elegant and unprecedented mechanism to control phosphorylation signaling cascades in a ligand-dependent manner. The knowledge of their three-dimensional structures paves the way to the design of ABA agonists able to modulate the plant stress response. (C) 2010 Elsevier Ireland Ltd. All rights reserved.We are grateful to the European Synchrotron Radiation Facility (ESRF) and the EMBL for access to macromolecular crystallography beam lines. Work in the laboratory of Dr Rodriguez is supported by grant BIO2008-00221 from Ministerio de Educación y Ciencia and Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Científicas (fellowships to JS, RA and LR; Juan de la Cierva contract to MGG). Access to the high Throughput Crystallization facility of the Partnership for Structural Biology in Grenoble (PSB) (https://htxlab.embl.fr) was supported by the European Community – Research InfrastructureAction PCUBE under the FP7 “Capacities” specific program.Santiago Cuéllar, J.; Dupeux, F.; Betz, K.; Antoni-Alandes, R.; González Guzmán, M.; Rodriguez, L.; Márquez, JA.... (2012). Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Science. 182:3-11. https://doi.org/10.1016/j.plantsci.2010.11.014S31118

    Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism

    Get PDF
    Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface

    PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms

    Get PDF
    [EN] The phytohormone abscisic acid (ABA) plays a key role regulating root growth, root system architecture, and root adaptive responses, such as hydrotropism. The molecular and cellular mechanisms that regulate the action of core ABA signaling components in roots are not fully understood. ABA is perceived through receptors from the PYR/PYL/RCAR family and PP2C coreceptors. PYL8/RCAR3 plays a nonredundant role in regulating primary and lateral root growth. Here we demonstrate that ABA specifically stabilizes PYL8 compared with other ABA receptors and induces accumulation of PYL8 in root nuclei. This requires ABA perception by PYL8 and leads to diminished ubiquitination of PYL8 in roots. The ABA agonist quinabactin, which promotes root ABA signaling through dimeric receptors, fails to stabilize the monomeric receptor PYL8. Moreover, a PYL8 mutant unable to bind ABA and inhibit PP2C is not stabilized by the ligand, whereas a PYL85KR mutant is more stable than PYL8 at endogenous ABA concentrations. The PYL8 transcript was detected in the epidermis and stele of the root meristem; however, the PYL8 protein was also detected in adjacent tissues. Expression of PYL8 driven by tissue-specific promoters revealed movement to adjacent tissues. Hence both inter- and intracellular trafficking of PYL8 appears to occur in the root apical meristem. Our findings reveal a non-cell-autonomous mechanism for hormone receptors and help explain the nonredundant role of PYL8-mediated root ABA signaling.Work in the P.L.R. and F.M. laboratories was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas Grants BIO2014-52537-R and BIO2017-82503-R (to P.L.R.) and BIO2015-64307-R (to F.M.). J.L.-J. was supported by a Juan de la Cierva contract from Ministerio de Economia y Competitividad (MINECO) and by the Marie Sklodowska-Curie Action H2020-MSCA-IF-2015-707477. B.B.-P. was funded by Programa VALi+d GVA APOSTD/2017/039. J.J. was supported by a FPI contract from MINECO and M.A.F. by a Formacion de Profesorado Universitario contract from MINECO. D.D. and M.J.B. were supported by Biotechnology and Biological Sciences Research Council Grant BB/M002136/1 and Leverhulme Trust Grant RPG-2016-409.Belda-Palazón, B.; Gonzalez-Garcia, M.; Lozano Juste, J.; Coego Gonzalez, A.; Antoni-Alandes, R.; Julian-Valenzuela, J.; Peirats-Llobet, M.... (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms. Proceedings of the National Academy of Sciences of the United States of America (Online). 115(50):E11857-E11863. https://doi.org/10.1073/pnas.1815410115SE11857E1186311550Ubeda-Tomás, S., Beemster, G. T. S., & Bennett, M. J. (2012). Hormonal regulation of root growth: integrating local activities into global behaviour. Trends in Plant Science, 17(6), 326-331. doi:10.1016/j.tplants.2012.02.002Bao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q., … Dinneny, J. R. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences, 111(25), 9319-9324. doi:10.1073/pnas.1400966111Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., … Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 3(6). doi:10.1038/nplants.2017.57Harris, J. (2015). Abscisic Acid: Hidden Architect of Root System Structure. Plants, 4(3), 548-572. doi:10.3390/plants4030548Spollen, W. G., LeNoble, M. E., Samuels, T. D., Bernstein, N., & Sharp, R. E. (2000). Abscisic Acid Accumulation Maintains Maize Primary Root Elongation at Low Water Potentials by Restricting Ethylene Production. Plant Physiology, 122(3), 967-976. doi:10.1104/pp.122.3.967Sharp, R. E. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 55(407), 2343-2351. doi:10.1093/jxb/erh276Deak, K. I., & Malamy, J. (2005). Osmotic regulation of root system architecture. The Plant Journal, 43(1), 17-28. doi:10.1111/j.1365-313x.2005.02425.xGonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574Duan, L., Dietrich, D., Ng, C. H., Chan, P. M. Y., Bhalerao, R., Bennett, M. J., & Dinneny, J. R. (2013). Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings. The Plant Cell, 25(1), 324-341. doi:10.1105/tpc.112.107227Feng, W., Lindner, H., Robbins, N. E., & Dinneny, J. R. (2016). Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses. The Plant Cell, 28(8), 1769-1782. doi:10.1105/tpc.16.00182Geng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M. Y., … Dinneny, J. R. (2013). A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis. The Plant Cell, 25(6), 2132-2154. doi:10.1105/tpc.113.112896Takahashi, N., Goto, N., Okada, K., & Takahashi, H. (2002). Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta, 216(2), 203-211. doi:10.1007/s00425-002-0840-3Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root. Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678Barberon, M., Vermeer, J. E. M., De Bellis, D., Wang, P., Naseer, S., Andersen, T. G., … Geldner, N. (2016). Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell, 164(3), 447-459. doi:10.1016/j.cell.2015.12.021Ondzighi-Assoume, C. A., Chakraborty, S., & Harris, J. M. (2016). Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores. The Plant Cell, 28(3), 729-745. doi:10.1105/tpc.15.00946Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708Knoblich, J. A. (2005). Pins for spines. Nature Cell Biology, 7(12), 1057-1058. doi:10.1038/ncb1205-1057Zhang, H., Han, W., De Smet, I., Talboys, P., Loya, R., Hassan, A., … Wang, M.-H. (2010). ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. The Plant Journal, 64(5), 764-774. doi:10.1111/j.1365-313x.2010.04367.xBelda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178Yu, F., Lou, L., Tian, M., Li, Q., Ding, Y., Cao, X., … Xie, Q. (2016). ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 9(12), 1570-1582. doi:10.1016/j.molp.2016.11.002Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.xSzostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.xOkamoto, M., Peterson, F. C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., … Cutler, S. R. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences, 110(29), 12132-12137. doi:10.1073/pnas.1305919110Cao, M., Liu, X., Zhang, Y., Xue, X., Zhou, X. E., Melcher, K., … Xu, Y. (2013). An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Research, 23(8), 1043-1054. doi:10.1038/cr.2013.95Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392), ra89-ra89. doi:10.1126/scisignal.aaa7981Wu, S., & Gallagher, K. L. (2014). The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on the endomembrane system. The Plant Journal, 80(3), 396-409. doi:10.1111/tpj.12640Nakajima, K., Sena, G., Nawy, T., & Benfey, P. N. (2001). Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413(6853), 307-311. doi:10.1038/35095061Gallagher, K. L., Paquette, A. J., Nakajima, K., & Benfey, P. N. (2004). Mechanisms Regulating SHORT-ROOT Intercellular Movement. Current Biology, 14(20), 1847-1851. doi:10.1016/j.cub.2004.09.081Pálfy, M., Reményi, A., & Korcsmáros, T. (2012). Endosomal crosstalk: meeting points for signaling pathways. Trends in Cell Biology, 22(9), 447-456. doi:10.1016/j.tcb.2012.06.004Christmann, A., Hoffmann, T., Teplova, I., Grill, E., & Müller, A. (2004). Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis. Plant Physiology, 137(1), 209-219. doi:10.1104/pp.104.053082Kim, T.-H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., … Schroeder, J. I. (2011). Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 21(11), 990-997. doi:10.1016/j.cub.2011.04.045Waadt, R., Hitomi, K., Nishimura, N., Hitomi, C., Adams, S. R., Getzoff, E. D., & Schroeder, J. I. (2014). FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife, 3. doi:10.7554/elife.01739Jones, A. M., Danielson, J. Å., ManojKumar, S. N., Lanquar, V., Grossmann, G., & Frommer, W. B. (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife, 3. doi:10.7554/elife.01741Zhao, Y., Xing, L., Wang, X., Hou, Y.-J., Gao, J., Wang, P., … Zhu, J.-K. (2014). The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Science Signaling, 7(328), ra53-ra53. doi:10.1126/scisignal.2005051Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.xLynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-

    The global retinoblastoma outcome study : a prospective, cluster-based analysis of 4064 patients from 149 countries

    Get PDF
    DATA SHARING : The study data will become available online once all analyses are complete.BACKGROUND : Retinoblastoma is the most common intraocular cancer worldwide. There is some evidence to suggest that major differences exist in treatment outcomes for children with retinoblastoma from different regions, but these differences have not been assessed on a global scale. We aimed to report 3-year outcomes for children with retinoblastoma globally and to investigate factors associated with survival. METHODS : We did a prospective cluster-based analysis of treatment-naive patients with retinoblastoma who were diagnosed between Jan 1, 2017, and Dec 31, 2017, then treated and followed up for 3 years. Patients were recruited from 260 specialised treatment centres worldwide. Data were obtained from participating centres on primary and additional treatments, duration of follow-up, metastasis, eye globe salvage, and survival outcome. We analysed time to death and time to enucleation with Cox regression models. FINDINGS : The cohort included 4064 children from 149 countries. The median age at diagnosis was 23·2 months (IQR 11·0–36·5). Extraocular tumour spread (cT4 of the cTNMH classification) at diagnosis was reported in five (0·8%) of 636 children from high-income countries, 55 (5·4%) of 1027 children from upper-middle-income countries, 342 (19·7%) of 1738 children from lower-middle-income countries, and 196 (42·9%) of 457 children from low-income countries. Enucleation surgery was available for all children and intravenous chemotherapy was available for 4014 (98·8%) of 4064 children. The 3-year survival rate was 99·5% (95% CI 98·8–100·0) for children from high-income countries, 91·2% (89·5–93·0) for children from upper-middle-income countries, 80·3% (78·3–82·3) for children from lower-middle-income countries, and 57·3% (52·1-63·0) for children from low-income countries. On analysis, independent factors for worse survival were residence in low-income countries compared to high-income countries (hazard ratio 16·67; 95% CI 4·76–50·00), cT4 advanced tumour compared to cT1 (8·98; 4·44–18·18), and older age at diagnosis in children up to 3 years (1·38 per year; 1·23–1·56). For children aged 3–7 years, the mortality risk decreased slightly (p=0·0104 for the change in slope). INTERPRETATION : This study, estimated to include approximately half of all new retinoblastoma cases worldwide in 2017, shows profound inequity in survival of children depending on the national income level of their country of residence. In high-income countries, death from retinoblastoma is rare, whereas in low-income countries estimated 3-year survival is just over 50%. Although essential treatments are available in nearly all countries, early diagnosis and treatment in low-income countries are key to improving survival outcomes.The Queen Elizabeth Diamond Jubilee Trust and the Wellcome Trust.https://www.thelancet.com/journals/langlo/homeam2023Paediatrics and Child Healt

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    RBR-type E3 ligases and the ubiquitin-conjugating enzyme UBC26 regulate abscisic acid receptor levels and signaling

    No full text
    The turnover of abscisic acid (ABA) signaling core components modulates the plant's response to ABA and is regulated by ubiquitination. We show that Arabidopsis (Arabidopsis thaliana) RING finger ABA-related 1 (RFA1) and RFA4 E3 ubiquitin ligases, members of the RING between RING fingers (RBR)-type RSL1/RFA family, are key regulators of ABA receptor stability in root and leaf tissues, targeting ABA receptors for degradation in different subcellular locations. RFA1 is localized both in the nucleus and cytosol, whereas RFA4 shows specific nuclear localization and promotes nuclear degradation of ABA receptors. Therefore, members of the RSL1/RFA family interact with ABA receptors at plasma membrane, cytosol and nucleus, targeting them for degradation via the endosomal/vacuolar RSL1-dependent pathway or 26S proteasome. Additionally, we provide insight into the physiological function of the relatively unexplored plant RBR-type E3 ligases, and through mutagenesis and biochemical assays we identified Cys361 in RFA4 as the putative active site cysteine, which is a distinctive feature of RBR-type E3 ligases. Endogenous levels of PYR1 and PYL4 ABA receptors were higher in the rfa1 rfa4 double mutant than in wild-type plants. UBC26 was identified as the cognate nuclear E2 enzyme that interacts with the RFA4 E3 ligase and forms UBC26-RFA4-Receptor complexes in nuclear speckles. Loss-of-function ubc26 alleles and the rfa1 rfa4 double mutant showed enhanced sensitivity to ABA and accumulation of ABA receptors compared to the wild type. Together our results reveal a sophisticated mechanism by which ABA receptors are targeted by ubiquitin (Ub) at different subcellular locations, in which the complexity of the ABA receptor family is mirrored in the partner RBR-type E3 ligases. Abscisic acid receptors are targeted for degradation by a family of E3 ubiquitin ligases at different subcellular locations, which modulates hormone signaling in plasma membrane, cytosol, and nucleu

    Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele1[C][W]

    Get PDF
    The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABA-INSENSITIVE1 and HYPERSENSITIVE TO ABA1 (HAB1), causing the activation of the ABA signaling pathway. To gain further understanding on the mechanism of hormone perception, PP2C inhibition, and its implications for ABA signaling, we have performed a structural and functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-function mutation in a critical residue of the phosphatase, hab1W385A, which abolished ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, hab1W385A caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1W385A qualifies as a hypermorphic mutation. Expression of hab1W385A in Arabidopsis (Arabidopsis thaliana) plants leads to a strong, dominant ABA insensitivity, which demonstrates that this conserved tryptophan residue can be targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the critical role of molecular interactions mediated by tryptophan-385 equivalent residues for clade A PP2C function in vivo and the mechanism of ABA perception and signaling
    corecore