60 research outputs found

    Fungal Planet description sheets: 154–213

    Get PDF
    Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa

    One fungus, which genes?: development and assessment of universal primers for potential secondary fungal DNA barcodes

    Get PDF
    The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial beta-tubulin II (TUB2); iv) gamma-actin (ACT); v) translation elongation factor 1-alpha (TEF1 alpha); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1 alpha. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1 alpha, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail

    Electroanalysis may be used in the Vanillin Biotechnological Production

    Get PDF
    This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible

    The genome of the white-rot fungus Pycnoporus cinnabarinus : a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown

    Get PDF
    Background: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.Results: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all thespecific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases.Conclusions: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.Microbial Biotechnolog

    Mass balance modeling of vanillin production from vanillic acid by cultures of the fungus Pycnoporus cinnabarinus in bioreactors

    No full text
    A systematic two-step procedure for the structural identification of bioprocesses is followed in order to establish a mechanistic model for vanillin production by Pycnoporus cinnabarinus. The first step is devoted to the identification of the underlying reaction structure and the development of a validated mass balance model for the growth of P. cinnabarinus and the biotransformation of vanillic acid into vanillin. The second step is devoted to the kinetic modeling, namely, the estimation of the reaction rates and the calibration of the kinetic parameters. The whole procedure leads to the final set up of a simulation model of the process. The results are supported by the data from five cultures of P. cinnabarinus in bioreactors. (C) 1999 John Wiley & Sons, Inc

    Metabolic pathways of biotransformation and biosynthesis of aromatic compounds for the flavour industry by the basidiomycete Pycnoporus cinnabarinus

    No full text
    Among filamentous fungi, white-rot Basidiomycetes have become a strategic group to generate industrial aromatic flavours. In the course of a basidiomycete screening, the biotechnological potential of #Pycnoporus cinnabarinus strains was studied in order to produce, by transformation or de novo, natural aromatic flavours in liquid cultures. Ferulic acid and L-phenylalanine were found to be suitable substrates for vanillin and benzaldehyde (bitter almond aroma) production, respectively. These strains were also capable of producing de novo methylanthranilate, which has been described as the organoleptic note of wood strawberry. However, strains of #P. cinnabarinus often expressed laccase activity, which was unfavourable because the pathway to aromatic flavours is bypassed. To overcome this problem, the selection of monokaryotic laccase-deficient strains from basidiospores by classical genetics allowed to obtain more productive and more stable mycelial lines. (Résumé d'auteur

    Biogas based polygeneration plant options utilizing dairy farms waste : A Bolivian case

    No full text
    This study presents a comparative techno-economic feasibility analysis for two polygeneration plant solutions, applied to low-income dairy farms in Bolivia. The first option considers an internally fired microturbine (IFMT) and, the second, an internal combustion engine (ICE). They are integrated with an absorption refrigeration system and a fertilizer dryer. Biogas, produced with farms waste, fuels these power generators. The levelized costs of biogas for cooking, electricity, cooling and fertilizers were determined. The cost of biogas, for both options, was found to be 0.020 USD/kWh, which is lower than the subsidized price of LPG. The most competitive cost of electricity was determined for the ICE plant option; it was found to be 0.082 USD/kWh and is lower than the subsidized cost of fossil fuel-based electricity. The cost of cooling was found to be around 0.082 USD/kWh, which is slightly higher than the cost of cooling supplied by using grid electricity. In a realistic scenario, the shorter payback period was found to be 4.4 years for the ICE plant option. From this, the ICE-based plant was found as the most feasible option. Additionally, if no subsidies are applied to the fossil fuel-based services, the proposed polygeneration systems are a highly competitive alternative

    Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus

    No full text
    The biotechnological process of vanillin production from vanillic acid by Pycnoporus cinnabarinus was scaled-up at the laboratory level. Vanillin production was studied in two types of bioreactors, a mechanically agitated and an air-lift bioreactor. In the mechanically agitated bioreactor where vanillin was produced in greater quantities, oxygen availability was studied during the growth and production phases. A maximal aeration rate (90 l/h equivalent to 0.83 volume of air/volume of medium/min or vvm) during the growth phase and a minimal aeration rate (30 l/h equivalent to 0.28 vvm) during the production phase were necessary to increase vanillin production to 1260 mg/l. Vanillic acid bioconversion to vanillin occurred under the conditions of reduced dissolved oxygen concentration, gentle agitation, high carbon dioxide production and low specific growth rate. However, under these conditions, vanillin production was accompanied by a significant amount of methoxyhydroquinone. Vanillin over a concentration of 1000 mg/l was shown to be highly toxic to the growth of P. cinnabarinus on agar medium. The application of selective XAD-2 resin led to a reduction of vanillin concentration in the medium, thus limiting its toxicity towards the fungal biomass as well as the formation of unwanted by-products such as methoxyhydroquinone and allowed the concentration of vanillin produced to reach 1575 mg/l
    corecore